diff options
Diffstat (limited to 'src')
| -rw-r--r-- | src/3p/README | 2 | ||||
| -rw-r--r-- | src/3p/monocypher/monocypher-rng.c | 97 | ||||
| -rw-r--r-- | src/3p/monocypher/monocypher-rng.h | 67 | ||||
| -rw-r--r-- | src/3p/monocypher/monocypher.c | 2958 | ||||
| -rw-r--r-- | src/3p/monocypher/monocypher.h | 384 | ||||
| -rw-r--r-- | src/crypto.c | 6 | ||||
| -rw-r--r-- | src/crypto.h | 11 | 
7 files changed, 3524 insertions, 1 deletions
| diff --git a/src/3p/README b/src/3p/README index 1617ff0..ab11ade 100644 --- a/src/3p/README +++ b/src/3p/README @@ -2,7 +2,7 @@ These are imported 3rd party library sources, wrangled for ease of plonking into  the build (e.g. relative #includes, etc.).  Used in SST itself: -  [none currently, stuff will probably be added later] +  - monocypher  Used in debug builds, but not compiled into releases:    - udis86 diff --git a/src/3p/monocypher/monocypher-rng.c b/src/3p/monocypher/monocypher-rng.c new file mode 100644 index 0000000..d59fc76 --- /dev/null +++ b/src/3p/monocypher/monocypher-rng.c @@ -0,0 +1,97 @@ +// This file is dual-licensed.  Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence.  The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain.  The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2019-2021, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +//    notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +//    notice, this list of conditions and the following disclaimer in the +//    documentation and/or other materials provided with the +//    distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2019-2021 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide.  This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software.  If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#include "monocypher-rng.h" +#include "monocypher.h" + +// avoid memcpy dependency (the compiler will likely use memcpy anyway) +static void copy(uint8_t *out, uint8_t *in, size_t size) +{ +    for (size_t i = 0; i < size; i++) { +        out[i] = in[i]; +    } +} + +// mike: HACK: for single translation unit crypto.c, there's already zero[128] +// in monocypher.c, so leave this out! +//static const uint8_t zero[8] = {0}; + +void crypto_rng_init(crypto_rng_ctx *ctx, uint8_t random_seed[32]) +{ +    copy(ctx->pool, random_seed, 32); +    ctx->idx = 512; +    crypto_wipe(random_seed, 32); +} + +void crypto_rng_read(crypto_rng_ctx *ctx, uint8_t *buf, size_t size) +{ +    size_t pool_size = 512 - ctx->idx; +    while (size > pool_size) { +        copy(buf, ctx->pool + ctx->idx, pool_size); +        crypto_chacha20(ctx->pool, 0, 512, ctx->pool, zero); +        size     -= pool_size; +        buf      += pool_size; +        ctx->idx  = 32; +        pool_size = 512 - 32; +    } +    copy(buf, ctx->pool + ctx->idx, size); +    ctx->idx += size; + +    // Wipe used bytes ASAP (even if they'll be erased later) +    crypto_wipe(ctx->pool + 32, ctx->idx - 32); +} + +void crypto_rng_fork(crypto_rng_ctx *ctx, crypto_rng_ctx *child_ctx) +{ +    uint8_t child_seed[32]; // wiped by crypto_rng_init; +    crypto_rng_read(ctx, child_seed, 32); +    crypto_rng_init(child_ctx, child_seed); +} diff --git a/src/3p/monocypher/monocypher-rng.h b/src/3p/monocypher/monocypher-rng.h new file mode 100644 index 0000000..22b953c --- /dev/null +++ b/src/3p/monocypher/monocypher-rng.h @@ -0,0 +1,67 @@ +// This file is dual-licensed.  Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence.  The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain.  The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2019, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +//    notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +//    notice, this list of conditions and the following disclaimer in the +//    documentation and/or other materials provided with the +//    distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2017-2019 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide.  This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software.  If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#ifndef CRYPTO_RNG +#define CRYPTO_RNG + +#include <stddef.h> +#include <stdint.h> + +typedef struct { +    uint8_t pool[512]; +    size_t  idx; +} crypto_rng_ctx; + +void crypto_rng_init(crypto_rng_ctx *ctx, uint8_t random_seed[32]); +void crypto_rng_read(crypto_rng_ctx *ctx, uint8_t *buf, size_t size); +void crypto_rng_fork(crypto_rng_ctx *ctx, crypto_rng_ctx *child_ctx); + +#endif // CRYPTO_RNG diff --git a/src/3p/monocypher/monocypher.c b/src/3p/monocypher/monocypher.c new file mode 100644 index 0000000..bd73306 --- /dev/null +++ b/src/3p/monocypher/monocypher.c @@ -0,0 +1,2958 @@ +// Monocypher version 3.1.3 +// +// This file is dual-licensed.  Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence.  The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain.  The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2017-2020, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +//    notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +//    notice, this list of conditions and the following disclaimer in the +//    documentation and/or other materials provided with the +//    distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2017-2020 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide.  This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software.  If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#include "monocypher.h" + +#ifdef MONOCYPHER_CPP_NAMESPACE +namespace MONOCYPHER_CPP_NAMESPACE { +#endif + +///////////////// +/// Utilities /// +///////////////// +#define FOR_T(type, i, start, end) for (type i = (start); i < (end); i++) +#define FOR(i, start, end)         FOR_T(size_t, i, start, end) +#define COPY(dst, src, size)       FOR(i__, 0, size) (dst)[i__] = (src)[i__] +#define ZERO(buf, size)            FOR(i__, 0, size) (buf)[i__] = 0 +#define WIPE_CTX(ctx)              crypto_wipe(ctx   , sizeof(*(ctx))) +#define WIPE_BUFFER(buffer)        crypto_wipe(buffer, sizeof(buffer)) +#define MIN(a, b)                  ((a) <= (b) ? (a) : (b)) +#define MAX(a, b)                  ((a) >= (b) ? (a) : (b)) + +typedef int8_t   i8; +typedef uint8_t  u8; +typedef int16_t  i16; +typedef uint32_t u32; +typedef int32_t  i32; +typedef int64_t  i64; +typedef uint64_t u64; + +static const u8 zero[128] = {0}; + +// returns the smallest positive integer y such that +// (x + y) % pow_2  == 0 +// Basically, it's how many bytes we need to add to "align" x. +// Only works when pow_2 is a power of 2. +// Note: we use ~x+1 instead of -x to avoid compiler warnings +static size_t align(size_t x, size_t pow_2) +{ +    return (~x + 1) & (pow_2 - 1); +} + +static u32 load24_le(const u8 s[3]) +{ +    return (u32)s[0] +        | ((u32)s[1] <<  8) +        | ((u32)s[2] << 16); +} + +static u32 load32_le(const u8 s[4]) +{ +    return (u32)s[0] +        | ((u32)s[1] <<  8) +        | ((u32)s[2] << 16) +        | ((u32)s[3] << 24); +} + +static u64 load64_le(const u8 s[8]) +{ +    return load32_le(s) | ((u64)load32_le(s+4) << 32); +} + +static void store32_le(u8 out[4], u32 in) +{ +    out[0] =  in        & 0xff; +    out[1] = (in >>  8) & 0xff; +    out[2] = (in >> 16) & 0xff; +    out[3] = (in >> 24) & 0xff; +} + +static void store64_le(u8 out[8], u64 in) +{ +    store32_le(out    , (u32)in ); +    store32_le(out + 4, in >> 32); +} + +static void load32_le_buf (u32 *dst, const u8 *src, size_t size) { +    FOR(i, 0, size) { dst[i] = load32_le(src + i*4); } +} +static void load64_le_buf (u64 *dst, const u8 *src, size_t size) { +    FOR(i, 0, size) { dst[i] = load64_le(src + i*8); } +} +static void store32_le_buf(u8 *dst, const u32 *src, size_t size) { +    FOR(i, 0, size) { store32_le(dst + i*4, src[i]); } +} +static void store64_le_buf(u8 *dst, const u64 *src, size_t size) { +    FOR(i, 0, size) { store64_le(dst + i*8, src[i]); } +} + +static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); } +static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); } + +static int neq0(u64 diff) +{   // constant time comparison to zero +    // return diff != 0 ? -1 : 0 +    u64 half = (diff >> 32) | ((u32)diff); +    return (1 & ((half - 1) >> 32)) - 1; +} + +static u64 x16(const u8 a[16], const u8 b[16]) +{ +    return (load64_le(a + 0) ^ load64_le(b + 0)) +        |  (load64_le(a + 8) ^ load64_le(b + 8)); +} +static u64 x32(const u8 a[32],const u8 b[32]){return x16(a,b)| x16(a+16, b+16);} +static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);} +int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); } +int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); } +int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); } + +void crypto_wipe(void *secret, size_t size) +{ +    volatile u8 *v_secret = (u8*)secret; +    ZERO(v_secret, size); +} + +///////////////// +/// Chacha 20 /// +///////////////// +#define QUARTERROUND(a, b, c, d)     \ +    a += b;  d = rotl32(d ^ a, 16);  \ +    c += d;  b = rotl32(b ^ c, 12);  \ +    a += b;  d = rotl32(d ^ a,  8);  \ +    c += d;  b = rotl32(b ^ c,  7) + +static void chacha20_rounds(u32 out[16], const u32 in[16]) +{ +    // The temporary variables make Chacha20 10% faster. +    u32 t0  = in[ 0];  u32 t1  = in[ 1];  u32 t2  = in[ 2];  u32 t3  = in[ 3]; +    u32 t4  = in[ 4];  u32 t5  = in[ 5];  u32 t6  = in[ 6];  u32 t7  = in[ 7]; +    u32 t8  = in[ 8];  u32 t9  = in[ 9];  u32 t10 = in[10];  u32 t11 = in[11]; +    u32 t12 = in[12];  u32 t13 = in[13];  u32 t14 = in[14];  u32 t15 = in[15]; + +    FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop. +        QUARTERROUND(t0, t4, t8 , t12); // column 0 +        QUARTERROUND(t1, t5, t9 , t13); // column 1 +        QUARTERROUND(t2, t6, t10, t14); // column 2 +        QUARTERROUND(t3, t7, t11, t15); // column 3 +        QUARTERROUND(t0, t5, t10, t15); // diagonal 0 +        QUARTERROUND(t1, t6, t11, t12); // diagonal 1 +        QUARTERROUND(t2, t7, t8 , t13); // diagonal 2 +        QUARTERROUND(t3, t4, t9 , t14); // diagonal 3 +    } +    out[ 0] = t0;   out[ 1] = t1;   out[ 2] = t2;   out[ 3] = t3; +    out[ 4] = t4;   out[ 5] = t5;   out[ 6] = t6;   out[ 7] = t7; +    out[ 8] = t8;   out[ 9] = t9;   out[10] = t10;  out[11] = t11; +    out[12] = t12;  out[13] = t13;  out[14] = t14;  out[15] = t15; +} + +const u8 *chacha20_constant = (const u8*)"expand 32-byte k"; // 16 bytes + +void crypto_hchacha20(u8 out[32], const u8 key[32], const u8 in [16]) +{ +    u32 block[16]; +    load32_le_buf(block     , chacha20_constant, 4); +    load32_le_buf(block +  4, key              , 8); +    load32_le_buf(block + 12, in               , 4); + +    chacha20_rounds(block, block); + +    // prevent reversal of the rounds by revealing only half of the buffer. +    store32_le_buf(out   , block   , 4); // constant +    store32_le_buf(out+16, block+12, 4); // counter and nonce +    WIPE_BUFFER(block); +} + +u64 crypto_chacha20_ctr(u8 *cipher_text, const u8 *plain_text, +                        size_t text_size, const u8 key[32], const u8 nonce[8], +                        u64 ctr) +{ +    u32 input[16]; +    load32_le_buf(input     , chacha20_constant, 4); +    load32_le_buf(input +  4, key              , 8); +    load32_le_buf(input + 14, nonce            , 2); +    input[12] = (u32) ctr; +    input[13] = (u32)(ctr >> 32); + +    // Whole blocks +    u32    pool[16]; +    size_t nb_blocks = text_size >> 6; +    FOR (i, 0, nb_blocks) { +        chacha20_rounds(pool, input); +        if (plain_text != 0) { +            FOR (j, 0, 16) { +                u32 p = pool[j] + input[j]; +                store32_le(cipher_text, p ^ load32_le(plain_text)); +                cipher_text += 4; +                plain_text  += 4; +            } +        } else { +            FOR (j, 0, 16) { +                u32 p = pool[j] + input[j]; +                store32_le(cipher_text, p); +                cipher_text += 4; +            } +        } +        input[12]++; +        if (input[12] == 0) { +            input[13]++; +        } +    } +    text_size &= 63; + +    // Last (incomplete) block +    if (text_size > 0) { +        if (plain_text == 0) { +            plain_text = zero; +        } +        chacha20_rounds(pool, input); +        u8 tmp[64]; +        FOR (i, 0, 16) { +            store32_le(tmp + i*4, pool[i] + input[i]); +        } +        FOR (i, 0, text_size) { +            cipher_text[i] = tmp[i] ^ plain_text[i]; +        } +        WIPE_BUFFER(tmp); +    } +    ctr = input[12] + ((u64)input[13] << 32) + (text_size > 0); + +    WIPE_BUFFER(pool); +    WIPE_BUFFER(input); +    return ctr; +} + +u32 crypto_ietf_chacha20_ctr(u8 *cipher_text, const u8 *plain_text, +                             size_t text_size, +                             const u8 key[32], const u8 nonce[12], u32 ctr) +{ +    u64 big_ctr = ctr + ((u64)load32_le(nonce) << 32); +    return (u32)crypto_chacha20_ctr(cipher_text, plain_text, text_size, +                                    key, nonce + 4, big_ctr); +} + +u64 crypto_xchacha20_ctr(u8 *cipher_text, const u8 *plain_text, +                         size_t text_size, +                         const u8 key[32], const u8 nonce[24], u64 ctr) +{ +    u8 sub_key[32]; +    crypto_hchacha20(sub_key, key, nonce); +    ctr = crypto_chacha20_ctr(cipher_text, plain_text, text_size, +                              sub_key, nonce+16, ctr); +    WIPE_BUFFER(sub_key); +    return ctr; +} + +void crypto_chacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size, +                     const u8 key[32], const u8 nonce[8]) +{ +    crypto_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); + +} +void crypto_ietf_chacha20(u8 *cipher_text, const u8 *plain_text, +                          size_t text_size, +                          const u8 key[32], const u8 nonce[12]) +{ +    crypto_ietf_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); +} + +void crypto_xchacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size, +                      const u8 key[32], const u8 nonce[24]) +{ +    crypto_xchacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); +} + +///////////////// +/// Poly 1305 /// +///////////////// + +// h = (h + c) * r +// preconditions: +//   ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff +//   ctx->r <=   0ffffffc_0ffffffc_0ffffffc_0fffffff +//   end    <= 1 +// Postcondition: +//   ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff +static void poly_block(crypto_poly1305_ctx *ctx, const u8 in[16], unsigned end) +{ +    u32 s[4]; +    load32_le_buf(s, in, 4); + +    // s = h + c, without carry propagation +    const u64 s0 = ctx->h[0] + (u64)s[0]; // s0 <= 1_fffffffe +    const u64 s1 = ctx->h[1] + (u64)s[1]; // s1 <= 1_fffffffe +    const u64 s2 = ctx->h[2] + (u64)s[2]; // s2 <= 1_fffffffe +    const u64 s3 = ctx->h[3] + (u64)s[3]; // s3 <= 1_fffffffe +    const u32 s4 = ctx->h[4] + end;       // s4 <=          5 + +    // Local all the things! +    const u32 r0 = ctx->r[0];       // r0  <= 0fffffff +    const u32 r1 = ctx->r[1];       // r1  <= 0ffffffc +    const u32 r2 = ctx->r[2];       // r2  <= 0ffffffc +    const u32 r3 = ctx->r[3];       // r3  <= 0ffffffc +    const u32 rr0 = (r0 >> 2) * 5;  // rr0 <= 13fffffb // lose 2 bits... +    const u32 rr1 = (r1 >> 2) + r1; // rr1 <= 13fffffb // rr1 == (r1 >> 2) * 5 +    const u32 rr2 = (r2 >> 2) + r2; // rr2 <= 13fffffb // rr1 == (r2 >> 2) * 5 +    const u32 rr3 = (r3 >> 2) + r3; // rr3 <= 13fffffb // rr1 == (r3 >> 2) * 5 + +    // (h + c) * r, without carry propagation +    const u64 x0 = s0*r0+ s1*rr3+ s2*rr2+ s3*rr1+ s4*rr0; // <= 97ffffe007fffff8 +    const u64 x1 = s0*r1+ s1*r0 + s2*rr3+ s3*rr2+ s4*rr1; // <= 8fffffe20ffffff6 +    const u64 x2 = s0*r2+ s1*r1 + s2*r0 + s3*rr3+ s4*rr2; // <= 87ffffe417fffff4 +    const u64 x3 = s0*r3+ s1*r2 + s2*r1 + s3*r0 + s4*rr3; // <= 7fffffe61ffffff2 +    const u32 x4 = s4 * (r0 & 3); // ...recover 2 bits    // <=                f + +    // partial reduction modulo 2^130 - 5 +    const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5 +    const u64 u0 = (u5 >>  2) * 5 + (x0 & 0xffffffff); +    const u64 u1 = (u0 >> 32)     + (x1 & 0xffffffff) + (x0 >> 32); +    const u64 u2 = (u1 >> 32)     + (x2 & 0xffffffff) + (x1 >> 32); +    const u64 u3 = (u2 >> 32)     + (x3 & 0xffffffff) + (x2 >> 32); +    const u64 u4 = (u3 >> 32)     + (u5 & 3); + +    // Update the hash +    ctx->h[0] = (u32)u0; // u0 <= 1_9ffffff0 +    ctx->h[1] = (u32)u1; // u1 <= 1_97ffffe0 +    ctx->h[2] = (u32)u2; // u2 <= 1_8fffffe2 +    ctx->h[3] = (u32)u3; // u3 <= 1_87ffffe4 +    ctx->h[4] = (u32)u4; // u4 <=          4 +} + +void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32]) +{ +    ZERO(ctx->h, 5); // Initial hash is zero +    ctx->c_idx = 0; +    // load r and pad (r has some of its bits cleared) +    load32_le_buf(ctx->r  , key   , 4); +    load32_le_buf(ctx->pad, key+16, 4); +    FOR (i, 0, 1) { ctx->r[i] &= 0x0fffffff; } +    FOR (i, 1, 4) { ctx->r[i] &= 0x0ffffffc; } +} + +void crypto_poly1305_update(crypto_poly1305_ctx *ctx, +                            const u8 *message, size_t message_size) +{ +    // Align ourselves with block boundaries +    size_t aligned = MIN(align(ctx->c_idx, 16), message_size); +    FOR (i, 0, aligned) { +        ctx->c[ctx->c_idx] = *message; +        ctx->c_idx++; +        message++; +        message_size--; +    } + +    // If block is complete, process it +    if (ctx->c_idx == 16) { +        poly_block(ctx, ctx->c, 1); +        ctx->c_idx = 0; +    } + +    // Process the message block by block +    size_t nb_blocks = message_size >> 4; +    FOR (i, 0, nb_blocks) { +        poly_block(ctx, message, 1); +        message += 16; +    } +    message_size &= 15; + +    // remaining bytes (we never complete a block here) +    FOR (i, 0, message_size) { +        ctx->c[ctx->c_idx] = message[i]; +        ctx->c_idx++; +    } +} + +void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16]) +{ +    // Process the last block (if any) +    // We move the final 1 according to remaining input length +    // (this will add less than 2^130 to the last input block) +    if (ctx->c_idx != 0) { +        ZERO(ctx->c + ctx->c_idx, 16 - ctx->c_idx); +        ctx->c[ctx->c_idx] = 1; +        poly_block(ctx, ctx->c, 0); +    } + +    // check if we should subtract 2^130-5 by performing the +    // corresponding carry propagation. +    u64 c = 5; +    FOR (i, 0, 4) { +        c  += ctx->h[i]; +        c >>= 32; +    } +    c += ctx->h[4]; +    c  = (c >> 2) * 5; // shift the carry back to the beginning +    // c now indicates how many times we should subtract 2^130-5 (0 or 1) +    FOR (i, 0, 4) { +        c += (u64)ctx->h[i] + ctx->pad[i]; +        store32_le(mac + i*4, (u32)c); +        c = c >> 32; +    } +    WIPE_CTX(ctx); +} + +void crypto_poly1305(u8     mac[16],  const u8 *message, +                     size_t message_size, const u8  key[32]) +{ +    crypto_poly1305_ctx ctx; +    crypto_poly1305_init  (&ctx, key); +    crypto_poly1305_update(&ctx, message, message_size); +    crypto_poly1305_final (&ctx, mac); +} + +//////////////// +/// BLAKE2 b /// +//////////////// +static const u64 iv[8] = { +    0x6a09e667f3bcc908, 0xbb67ae8584caa73b, +    0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, +    0x510e527fade682d1, 0x9b05688c2b3e6c1f, +    0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, +}; + +static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block) +{ +    static const u8 sigma[12][16] = { +        {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 }, +        { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 }, +        { 11,  8, 12,  0,  5,  2, 15, 13, 10, 14,  3,  6,  7,  1,  9,  4 }, +        {  7,  9,  3,  1, 13, 12, 11, 14,  2,  6,  5, 10,  4,  0, 15,  8 }, +        {  9,  0,  5,  7,  2,  4, 10, 15, 14,  1, 11, 12,  6,  8,  3, 13 }, +        {  2, 12,  6, 10,  0, 11,  8,  3,  4, 13,  7,  5, 15, 14,  1,  9 }, +        { 12,  5,  1, 15, 14, 13,  4, 10,  0,  7,  6,  3,  9,  2,  8, 11 }, +        { 13, 11,  7, 14, 12,  1,  3,  9,  5,  0, 15,  4,  8,  6,  2, 10 }, +        {  6, 15, 14,  9, 11,  3,  0,  8, 12,  2, 13,  7,  1,  4, 10,  5 }, +        { 10,  2,  8,  4,  7,  6,  1,  5, 15, 11,  9, 14,  3, 12, 13,  0 }, +        {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 }, +        { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 }, +    }; + +    // increment input offset +    u64   *x = ctx->input_offset; +    size_t y = ctx->input_idx; +    x[0] += y; +    if (x[0] < y) { +        x[1]++; +    } + +    // init work vector +    u64 v0 = ctx->hash[0];  u64 v8  = iv[0]; +    u64 v1 = ctx->hash[1];  u64 v9  = iv[1]; +    u64 v2 = ctx->hash[2];  u64 v10 = iv[2]; +    u64 v3 = ctx->hash[3];  u64 v11 = iv[3]; +    u64 v4 = ctx->hash[4];  u64 v12 = iv[4] ^ ctx->input_offset[0]; +    u64 v5 = ctx->hash[5];  u64 v13 = iv[5] ^ ctx->input_offset[1]; +    u64 v6 = ctx->hash[6];  u64 v14 = iv[6] ^ (u64)~(is_last_block - 1); +    u64 v7 = ctx->hash[7];  u64 v15 = iv[7]; + +    // mangle work vector +    u64 *input = ctx->input; +#define BLAKE2_G(a, b, c, d, x, y)      \ +    a += b + x;  d = rotr64(d ^ a, 32); \ +    c += d;      b = rotr64(b ^ c, 24); \ +    a += b + y;  d = rotr64(d ^ a, 16); \ +    c += d;      b = rotr64(b ^ c, 63) +#define BLAKE2_ROUND(i)                                                 \ +    BLAKE2_G(v0, v4, v8 , v12, input[sigma[i][ 0]], input[sigma[i][ 1]]); \ +    BLAKE2_G(v1, v5, v9 , v13, input[sigma[i][ 2]], input[sigma[i][ 3]]); \ +    BLAKE2_G(v2, v6, v10, v14, input[sigma[i][ 4]], input[sigma[i][ 5]]); \ +    BLAKE2_G(v3, v7, v11, v15, input[sigma[i][ 6]], input[sigma[i][ 7]]); \ +    BLAKE2_G(v0, v5, v10, v15, input[sigma[i][ 8]], input[sigma[i][ 9]]); \ +    BLAKE2_G(v1, v6, v11, v12, input[sigma[i][10]], input[sigma[i][11]]); \ +    BLAKE2_G(v2, v7, v8 , v13, input[sigma[i][12]], input[sigma[i][13]]); \ +    BLAKE2_G(v3, v4, v9 , v14, input[sigma[i][14]], input[sigma[i][15]]) + +#ifdef BLAKE2_NO_UNROLLING +    FOR (i, 0, 12) { +        BLAKE2_ROUND(i); +    } +#else +    BLAKE2_ROUND(0);  BLAKE2_ROUND(1);  BLAKE2_ROUND(2);  BLAKE2_ROUND(3); +    BLAKE2_ROUND(4);  BLAKE2_ROUND(5);  BLAKE2_ROUND(6);  BLAKE2_ROUND(7); +    BLAKE2_ROUND(8);  BLAKE2_ROUND(9);  BLAKE2_ROUND(10); BLAKE2_ROUND(11); +#endif + +    // update hash +    ctx->hash[0] ^= v0 ^ v8;   ctx->hash[1] ^= v1 ^ v9; +    ctx->hash[2] ^= v2 ^ v10;  ctx->hash[3] ^= v3 ^ v11; +    ctx->hash[4] ^= v4 ^ v12;  ctx->hash[5] ^= v5 ^ v13; +    ctx->hash[6] ^= v6 ^ v14;  ctx->hash[7] ^= v7 ^ v15; +} + +static void blake2b_set_input(crypto_blake2b_ctx *ctx, u8 input, size_t index) +{ +    if (index == 0) { +        ZERO(ctx->input, 16); +    } +    size_t word = index >> 3; +    size_t byte = index & 7; +    ctx->input[word] |= (u64)input << (byte << 3); +} + +void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, +                                 const u8           *key, size_t key_size) +{ +    // initial hash +    COPY(ctx->hash, iv, 8); +    ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size; + +    ctx->input_offset[0] = 0;         // beginning of the input, no offset +    ctx->input_offset[1] = 0;         // beginning of the input, no offset +    ctx->hash_size       = hash_size; // remember the hash size we want +    ctx->input_idx       = 0; + +    // if there is a key, the first block is that key (padded with zeroes) +    if (key_size > 0) { +        u8 key_block[128] = {0}; +        COPY(key_block, key, key_size); +        // same as calling crypto_blake2b_update(ctx, key_block , 128) +        load64_le_buf(ctx->input, key_block, 16); +        ctx->input_idx = 128; +    } +} + +void crypto_blake2b_init(crypto_blake2b_ctx *ctx) +{ +    crypto_blake2b_general_init(ctx, 64, 0, 0); +} + +void crypto_blake2b_update(crypto_blake2b_ctx *ctx, +                           const u8 *message, size_t message_size) +{ +    // Align ourselves with block boundaries +    // The block that may result is not compressed yet +    size_t aligned = MIN(align(ctx->input_idx, 128), message_size); +    FOR (i, 0, aligned) { +        blake2b_set_input(ctx, *message, ctx->input_idx); +        ctx->input_idx++; +        message++; +        message_size--; +    } + +    // Process the message block by block +    // The last block is not compressed yet. +    size_t nb_blocks = message_size >> 7; +    FOR (i, 0, nb_blocks) { +        if (ctx->input_idx == 128) { +            blake2b_compress(ctx, 0); +        } +        load64_le_buf(ctx->input, message, 16); +        message += 128; +        ctx->input_idx = 128; +    } +    message_size &= 127; + +    // Fill remaining bytes (not the whole buffer) +    // The last block is never fully filled +    FOR (i, 0, message_size) { +        if (ctx->input_idx == 128) { +            blake2b_compress(ctx, 0); +            ctx->input_idx = 0; +        } +        blake2b_set_input(ctx, message[i], ctx->input_idx); +        ctx->input_idx++; +    } +} + +void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash) +{ +    // Pad the end of the block with zeroes +    FOR (i, ctx->input_idx, 128) { +        blake2b_set_input(ctx, 0, i); +    } +    blake2b_compress(ctx, 1); // compress the last block +    size_t nb_words = ctx->hash_size >> 3; +    store64_le_buf(hash, ctx->hash, nb_words); +    FOR (i, nb_words << 3, ctx->hash_size) { +        hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff; +    } +    WIPE_CTX(ctx); +} + +void crypto_blake2b_general(u8       *hash   , size_t hash_size, +                            const u8 *key    , size_t key_size, +                            const u8 *message, size_t message_size) +{ +    crypto_blake2b_ctx ctx; +    crypto_blake2b_general_init(&ctx, hash_size, key, key_size); +    crypto_blake2b_update(&ctx, message, message_size); +    crypto_blake2b_final(&ctx, hash); +} + +void crypto_blake2b(u8 hash[64], const u8 *message, size_t message_size) +{ +    crypto_blake2b_general(hash, 64, 0, 0, message, message_size); +} + +static void blake2b_vtable_init(void *ctx) { +    crypto_blake2b_init(&((crypto_sign_ctx*)ctx)->hash); +} +static void blake2b_vtable_update(void *ctx, const u8 *m, size_t s) { +    crypto_blake2b_update(&((crypto_sign_ctx*)ctx)->hash, m, s); +} +static void blake2b_vtable_final(void *ctx, u8 *h) { +    crypto_blake2b_final(&((crypto_sign_ctx*)ctx)->hash, h); +} +const crypto_sign_vtable crypto_blake2b_vtable = { +    crypto_blake2b, +    blake2b_vtable_init, +    blake2b_vtable_update, +    blake2b_vtable_final, +    sizeof(crypto_sign_ctx), +}; + +//////////////// +/// Argon2 i /// +//////////////// +// references to R, Z, Q etc. come from the spec + +// Argon2 operates on 1024 byte blocks. +typedef struct { u64 a[128]; } block; + +static void wipe_block(block *b) +{ +    volatile u64* a = b->a; +    ZERO(a, 128); +} + +// updates a BLAKE2 hash with a 32 bit word, little endian. +static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input) +{ +    u8 buf[4]; +    store32_le(buf, input); +    crypto_blake2b_update(ctx, buf, 4); +    WIPE_BUFFER(buf); +} + +static void load_block(block *b, const u8 bytes[1024]) +{ +    load64_le_buf(b->a, bytes, 128); +} + +static void store_block(u8 bytes[1024], const block *b) +{ +    store64_le_buf(bytes, b->a, 128); +} + +static void copy_block(block *o,const block*in){FOR(i,0,128)o->a[i] = in->a[i];} +static void  xor_block(block *o,const block*in){FOR(i,0,128)o->a[i]^= in->a[i];} + +// Hash with a virtually unlimited digest size. +// Doesn't extract more entropy than the base hash function. +// Mainly used for filling a whole kilobyte block with pseudo-random bytes. +// (One could use a stream cipher with a seed hash as the key, but +//  this would introduce another dependency —and point of failure.) +static void extended_hash(u8       *digest, u32 digest_size, +                          const u8 *input , u32 input_size) +{ +    crypto_blake2b_ctx ctx; +    crypto_blake2b_general_init(&ctx, MIN(digest_size, 64), 0, 0); +    blake_update_32            (&ctx, digest_size); +    crypto_blake2b_update      (&ctx, input, input_size); +    crypto_blake2b_final       (&ctx, digest); + +    if (digest_size > 64) { +        // the conversion to u64 avoids integer overflow on +        // ludicrously big hash sizes. +        u32 r   = (u32)(((u64)digest_size + 31) >> 5) - 2; +        u32 i   =  1; +        u32 in  =  0; +        u32 out = 32; +        while (i < r) { +            // Input and output overlap. This is intentional +            crypto_blake2b(digest + out, digest + in, 64); +            i   +=  1; +            in  += 32; +            out += 32; +        } +        crypto_blake2b_general(digest + out, digest_size - (32 * r), +                               0, 0, // no key +                               digest + in , 64); +    } +} + +#define LSB(x) ((x) & 0xffffffff) +#define G(a, b, c, d)                                            \ +    a += b + 2 * LSB(a) * LSB(b);  d ^= a;  d = rotr64(d, 32);   \ +    c += d + 2 * LSB(c) * LSB(d);  b ^= c;  b = rotr64(b, 24);   \ +    a += b + 2 * LSB(a) * LSB(b);  d ^= a;  d = rotr64(d, 16);   \ +    c += d + 2 * LSB(c) * LSB(d);  b ^= c;  b = rotr64(b, 63) +#define ROUND(v0,  v1,  v2,  v3,  v4,  v5,  v6,  v7,    \ +              v8,  v9, v10, v11, v12, v13, v14, v15)    \ +    G(v0, v4,  v8, v12);  G(v1, v5,  v9, v13);          \ +    G(v2, v6, v10, v14);  G(v3, v7, v11, v15);          \ +    G(v0, v5, v10, v15);  G(v1, v6, v11, v12);          \ +    G(v2, v7,  v8, v13);  G(v3, v4,  v9, v14) + +// Core of the compression function G.  Computes Z from R in place. +static void g_rounds(block *work_block) +{ +    // column rounds (work_block = Q) +    for (int i = 0; i < 128; i += 16) { +        ROUND(work_block->a[i     ], work_block->a[i +  1], +              work_block->a[i +  2], work_block->a[i +  3], +              work_block->a[i +  4], work_block->a[i +  5], +              work_block->a[i +  6], work_block->a[i +  7], +              work_block->a[i +  8], work_block->a[i +  9], +              work_block->a[i + 10], work_block->a[i + 11], +              work_block->a[i + 12], work_block->a[i + 13], +              work_block->a[i + 14], work_block->a[i + 15]); +    } +    // row rounds (work_block = Z) +    for (int i = 0; i < 16; i += 2) { +        ROUND(work_block->a[i      ], work_block->a[i +   1], +              work_block->a[i +  16], work_block->a[i +  17], +              work_block->a[i +  32], work_block->a[i +  33], +              work_block->a[i +  48], work_block->a[i +  49], +              work_block->a[i +  64], work_block->a[i +  65], +              work_block->a[i +  80], work_block->a[i +  81], +              work_block->a[i +  96], work_block->a[i +  97], +              work_block->a[i + 112], work_block->a[i + 113]); +    } +} + +// Argon2i uses a kind of stream cipher to determine which reference +// block it will take to synthesise the next block.  This context hold +// that stream's state.  (It's very similar to Chacha20.  The block b +// is analogous to Chacha's own pool) +typedef struct { +    block b; +    u32 pass_number; +    u32 slice_number; +    u32 nb_blocks; +    u32 nb_iterations; +    u32 ctr; +    u32 offset; +} gidx_ctx; + +// The block in the context will determine array indices. To avoid +// timing attacks, it only depends on public information.  No looking +// at a previous block to seed the next.  This makes offline attacks +// easier, but timing attacks are the bigger threat in many settings. +static void gidx_refresh(gidx_ctx *ctx) +{ +    // seed the beginning of the block... +    ctx->b.a[0] = ctx->pass_number; +    ctx->b.a[1] = 0;  // lane number (we have only one) +    ctx->b.a[2] = ctx->slice_number; +    ctx->b.a[3] = ctx->nb_blocks; +    ctx->b.a[4] = ctx->nb_iterations; +    ctx->b.a[5] = 1;  // type: Argon2i +    ctx->b.a[6] = ctx->ctr; +    ZERO(ctx->b.a + 7, 121); // ...then zero the rest out + +    // Shuffle the block thus: ctx->b = G((G(ctx->b, zero)), zero) +    // (G "square" function), to get cheap pseudo-random numbers. +    block tmp; +    copy_block(&tmp, &ctx->b); +    g_rounds  (&ctx->b); +    xor_block (&ctx->b, &tmp); +    copy_block(&tmp, &ctx->b); +    g_rounds  (&ctx->b); +    xor_block (&ctx->b, &tmp); +    wipe_block(&tmp); +} + +static void gidx_init(gidx_ctx *ctx, +                      u32 pass_number, u32 slice_number, +                      u32 nb_blocks,   u32 nb_iterations) +{ +    ctx->pass_number   = pass_number; +    ctx->slice_number  = slice_number; +    ctx->nb_blocks     = nb_blocks; +    ctx->nb_iterations = nb_iterations; +    ctx->ctr           = 0; + +    // Offset from the beginning of the segment.  For the first slice +    // of the first pass, we start at the *third* block, so the offset +    // starts at 2, not 0. +    if (pass_number != 0 || slice_number != 0) { +        ctx->offset = 0; +    } else { +        ctx->offset = 2; +        ctx->ctr++;         // Compensates for missed lazy creation +        gidx_refresh(ctx);  // at the start of gidx_next() +    } +} + +static u32 gidx_next(gidx_ctx *ctx) +{ +    // lazily creates the offset block we need +    if ((ctx->offset & 127) == 0) { +        ctx->ctr++; +        gidx_refresh(ctx); +    } +    u32 index  = ctx->offset & 127; // save index  for current call +    u32 offset = ctx->offset;       // save offset for current call +    ctx->offset++;                  // update offset for next call + +    // Computes the area size. +    // Pass 0 : all already finished segments plus already constructed +    //          blocks in this segment +    // Pass 1+: 3 last segments plus already constructed +    //          blocks in this segment.  THE SPEC SUGGESTS OTHERWISE. +    //          I CONFORM TO THE REFERENCE IMPLEMENTATION. +    int first_pass  = ctx->pass_number == 0; +    u32 slice_size  = ctx->nb_blocks >> 2; +    u32 nb_segments = first_pass ? ctx->slice_number : 3; +    u32 area_size   = nb_segments * slice_size + offset - 1; + +    // Computes the starting position of the reference area. +    // CONTRARY TO WHAT THE SPEC SUGGESTS, IT STARTS AT THE +    // NEXT SEGMENT, NOT THE NEXT BLOCK. +    u32 next_slice = ((ctx->slice_number + 1) & 3) * slice_size; +    u32 start_pos  = first_pass ? 0 : next_slice; + +    // Generate offset from J1 (no need for J2, there's only one lane) +    u64 j1  = ctx->b.a[index] & 0xffffffff; // pseudo-random number +    u64 x   = (j1 * j1)       >> 32; +    u64 y   = (area_size * x) >> 32; +    u64 z   = (area_size - 1) - y; +    u64 ref = start_pos + z;                // ref < 2 * nb_blocks +    return (u32)(ref < ctx->nb_blocks ? ref : ref - ctx->nb_blocks); +} + +// Main algorithm +void crypto_argon2i_general(u8       *hash,      u32 hash_size, +                            void     *work_area, u32 nb_blocks, +                            u32 nb_iterations, +                            const u8 *password,  u32 password_size, +                            const u8 *salt,      u32 salt_size, +                            const u8 *key,       u32 key_size, +                            const u8 *ad,        u32 ad_size) +{ +    // work area seen as blocks (must be suitably aligned) +    block *blocks = (block*)work_area; +    { +        crypto_blake2b_ctx ctx; +        crypto_blake2b_init(&ctx); + +        blake_update_32      (&ctx, 1            ); // p: number of threads +        blake_update_32      (&ctx, hash_size    ); +        blake_update_32      (&ctx, nb_blocks    ); +        blake_update_32      (&ctx, nb_iterations); +        blake_update_32      (&ctx, 0x13         ); // v: version number +        blake_update_32      (&ctx, 1            ); // y: Argon2i +        blake_update_32      (&ctx,           password_size); +        crypto_blake2b_update(&ctx, password, password_size); +        blake_update_32      (&ctx,           salt_size); +        crypto_blake2b_update(&ctx, salt,     salt_size); +        blake_update_32      (&ctx,           key_size); +        crypto_blake2b_update(&ctx, key,      key_size); +        blake_update_32      (&ctx,           ad_size); +        crypto_blake2b_update(&ctx, ad,       ad_size); + +        u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes +        crypto_blake2b_final(&ctx, initial_hash); + +        // fill first 2 blocks +        u8 hash_area[1024]; +        store32_le(initial_hash + 64, 0); // first  additional word +        store32_le(initial_hash + 68, 0); // second additional word +        extended_hash(hash_area, 1024, initial_hash, 72); +        load_block(blocks, hash_area); + +        store32_le(initial_hash + 64, 1); // slight modification +        extended_hash(hash_area, 1024, initial_hash, 72); +        load_block(blocks + 1, hash_area); + +        WIPE_BUFFER(initial_hash); +        WIPE_BUFFER(hash_area); +    } + +    // Actual number of blocks +    nb_blocks -= nb_blocks & 3; // round down to 4 p (p == 1 thread) +    const u32 segment_size = nb_blocks >> 2; + +    // fill (then re-fill) the rest of the blocks +    block tmp; +    gidx_ctx ctx; // public information, no need to wipe +    FOR_T (u32, pass_number, 0, nb_iterations) { +        int first_pass = pass_number == 0; + +        FOR_T (u32, segment, 0, 4) { +            gidx_init(&ctx, pass_number, segment, nb_blocks, nb_iterations); + +            // On the first segment of the first pass, +            // blocks 0 and 1 are already filled. +            // We use the offset to skip them. +            u32 start_offset  = first_pass && segment == 0 ? 2 : 0; +            u32 segment_start = segment * segment_size + start_offset; +            u32 segment_end   = (segment + 1) * segment_size; +            FOR_T (u32, current_block, segment_start, segment_end) { +                block *reference = blocks + gidx_next(&ctx); +                block *current   = blocks + current_block; +                block *previous  = current_block == 0 +                                 ? blocks + nb_blocks - 1 +                                 : blocks + current_block - 1; +                // Apply compression function G, +                // And copy it (or XOR it) to the current block. +                copy_block(&tmp, previous); +                xor_block (&tmp, reference); +                if (first_pass) { copy_block(current, &tmp); } +                else            { xor_block (current, &tmp); } +                g_rounds  (&tmp); +                xor_block (current, &tmp); +            } +        } +    } +    wipe_block(&tmp); +    u8 final_block[1024]; +    store_block(final_block, blocks + (nb_blocks - 1)); + +    // wipe work area +    volatile u64 *p = (u64*)work_area; +    ZERO(p, 128 * nb_blocks); + +    // hash the very last block with H' into the output hash +    extended_hash(hash, hash_size, final_block, 1024); +    WIPE_BUFFER(final_block); +} + +void crypto_argon2i(u8   *hash,      u32 hash_size, +                    void *work_area, u32 nb_blocks, u32 nb_iterations, +                    const u8 *password,  u32 password_size, +                    const u8 *salt,      u32 salt_size) +{ +    crypto_argon2i_general(hash, hash_size, work_area, nb_blocks, nb_iterations, +                           password, password_size, salt , salt_size, 0,0,0,0); +} + +//////////////////////////////////// +/// Arithmetic modulo 2^255 - 19 /// +//////////////////////////////////// +//  Originally taken from SUPERCOP's ref10 implementation. +//  A bit bigger than TweetNaCl, over 4 times faster. + +// field element +typedef i32 fe[10]; + +// field constants +// +// fe_one      : 1 +// sqrtm1      : sqrt(-1) +// d           :     -121665 / 121666 +// D2          : 2 * -121665 / 121666 +// lop_x, lop_y: low order point in Edwards coordinates +// ufactor     : -sqrt(-1) * 2 +// A2          : 486662^2  (A squared) +static const fe fe_one  = {1}; +static const fe sqrtm1  = {-32595792, -7943725, 9377950, 3500415, 12389472, +                           -272473, -25146209, -2005654, 326686, 11406482,}; +static const fe d       = {-10913610, 13857413, -15372611, 6949391, 114729, +                           -8787816, -6275908, -3247719, -18696448, -12055116,}; +static const fe D2      = {-21827239, -5839606, -30745221, 13898782, 229458, +                           15978800, -12551817, -6495438, 29715968, 9444199,}; +static const fe lop_x   = {21352778, 5345713, 4660180, -8347857, 24143090, +                           14568123, 30185756, -12247770, -33528939, 8345319,}; +static const fe lop_y   = {-6952922, -1265500, 6862341, -7057498, -4037696, +                           -5447722, 31680899, -15325402, -19365852, 1569102,}; +static const fe ufactor = {-1917299, 15887451, -18755900, -7000830, -24778944, +                           544946, -16816446, 4011309, -653372, 10741468,}; +static const fe A2      = {12721188, 3529, 0, 0, 0, 0, 0, 0, 0, 0,}; + +static void fe_0(fe h) {           ZERO(h  , 10); } +static void fe_1(fe h) { h[0] = 1; ZERO(h+1,  9); } + +static void fe_copy(fe h,const fe f           ){FOR(i,0,10) h[i] =  f[i];      } +static void fe_neg (fe h,const fe f           ){FOR(i,0,10) h[i] = -f[i];      } +static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];} +static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];} + +static void fe_cswap(fe f, fe g, int b) +{ +    i32 mask = -b; // -1 = 0xffffffff +    FOR (i, 0, 10) { +        i32 x = (f[i] ^ g[i]) & mask; +        f[i] = f[i] ^ x; +        g[i] = g[i] ^ x; +    } +} + +static void fe_ccopy(fe f, const fe g, int b) +{ +    i32 mask = -b; // -1 = 0xffffffff +    FOR (i, 0, 10) { +        i32 x = (f[i] ^ g[i]) & mask; +        f[i] = f[i] ^ x; +    } +} + + +// Signed carry propagation +// ------------------------ +// +// Let t be a number.  It can be uniquely decomposed thus: +// +//    t = h*2^26 + l +//    such that -2^25 <= l < 2^25 +// +// Let c = (t + 2^25) / 2^26            (rounded down) +//     c = (h*2^26 + l + 2^25) / 2^26   (rounded down) +//     c =  h   +   (l + 2^25) / 2^26   (rounded down) +//     c =  h                           (exactly) +// Because 0 <= l + 2^25 < 2^26 +// +// Let u = t          - c*2^26 +//     u = h*2^26 + l - h*2^26 +//     u = l +// Therefore, -2^25 <= u < 2^25 +// +// Additionally, if |t| < x, then |h| < x/2^26 (rounded down) +// +// Notations: +// - In C, 1<<25 means 2^25. +// - In C, x>>25 means floor(x / (2^25)). +// - All of the above applies with 25 & 24 as well as 26 & 25. +// +// +// Note on negative right shifts +// ----------------------------- +// +// In C, x >> n, where x is a negative integer, is implementation +// defined.  In practice, all platforms do arithmetic shift, which is +// equivalent to division by 2^26, rounded down.  Some compilers, like +// GCC, even guarantee it. +// +// If we ever stumble upon a platform that does not propagate the sign +// bit (we won't), visible failures will show at the slightest test, and +// the signed shifts can be replaced by the following: +// +//     typedef struct { i64 x:39; } s25; +//     typedef struct { i64 x:38; } s26; +//     i64 shift25(i64 x) { s25 s; s.x = ((u64)x)>>25; return s.x; } +//     i64 shift26(i64 x) { s26 s; s.x = ((u64)x)>>26; return s.x; } +// +// Current compilers cannot optimise this, causing a 30% drop in +// performance.  Fairly expensive for something that never happens. +// +// +// Precondition +// ------------ +// +// |t0|       < 2^63 +// |t1|..|t9| < 2^62 +// +// Algorithm +// --------- +// c   = t0 + 2^25 / 2^26   -- |c|  <= 2^36 +// t0 -= c * 2^26           -- |t0| <= 2^25 +// t1 += c                  -- |t1| <= 2^63 +// +// c   = t4 + 2^25 / 2^26   -- |c|  <= 2^36 +// t4 -= c * 2^26           -- |t4| <= 2^25 +// t5 += c                  -- |t5| <= 2^63 +// +// c   = t1 + 2^24 / 2^25   -- |c|  <= 2^38 +// t1 -= c * 2^25           -- |t1| <= 2^24 +// t2 += c                  -- |t2| <= 2^63 +// +// c   = t5 + 2^24 / 2^25   -- |c|  <= 2^38 +// t5 -= c * 2^25           -- |t5| <= 2^24 +// t6 += c                  -- |t6| <= 2^63 +// +// c   = t2 + 2^25 / 2^26   -- |c|  <= 2^37 +// t2 -= c * 2^26           -- |t2| <= 2^25        < 1.1 * 2^25  (final t2) +// t3 += c                  -- |t3| <= 2^63 +// +// c   = t6 + 2^25 / 2^26   -- |c|  <= 2^37 +// t6 -= c * 2^26           -- |t6| <= 2^25        < 1.1 * 2^25  (final t6) +// t7 += c                  -- |t7| <= 2^63 +// +// c   = t3 + 2^24 / 2^25   -- |c|  <= 2^38 +// t3 -= c * 2^25           -- |t3| <= 2^24        < 1.1 * 2^24  (final t3) +// t4 += c                  -- |t4| <= 2^25 + 2^38 < 2^39 +// +// c   = t7 + 2^24 / 2^25   -- |c|  <= 2^38 +// t7 -= c * 2^25           -- |t7| <= 2^24        < 1.1 * 2^24  (final t7) +// t8 += c                  -- |t8| <= 2^63 +// +// c   = t4 + 2^25 / 2^26   -- |c|  <= 2^13 +// t4 -= c * 2^26           -- |t4| <= 2^25        < 1.1 * 2^25  (final t4) +// t5 += c                  -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24  (final t5) +// +// c   = t8 + 2^25 / 2^26   -- |c|  <= 2^37 +// t8 -= c * 2^26           -- |t8| <= 2^25        < 1.1 * 2^25  (final t8) +// t9 += c                  -- |t9| <= 2^63 +// +// c   = t9 + 2^24 / 2^25   -- |c|  <= 2^38 +// t9 -= c * 2^25           -- |t9| <= 2^24        < 1.1 * 2^24  (final t9) +// t0 += c * 19             -- |t0| <= 2^25 + 2^38*19 < 2^44 +// +// c   = t0 + 2^25 / 2^26   -- |c|  <= 2^18 +// t0 -= c * 2^26           -- |t0| <= 2^25        < 1.1 * 2^25  (final t0) +// t1 += c                  -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24  (final t1) +// +// Postcondition +// ------------- +//   |t0|, |t2|, |t4|, |t6|, |t8|  <  1.1 * 2^25 +//   |t1|, |t3|, |t5|, |t7|, |t9|  <  1.1 * 2^24 +#define FE_CARRY                                                        \ +    i64 c;                                                              \ +    c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \ +    c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \ +    c = (t1 + ((i64)1<<24)) >> 25;  t1 -= c * ((i64)1 << 25);  t2 += c; \ +    c = (t5 + ((i64)1<<24)) >> 25;  t5 -= c * ((i64)1 << 25);  t6 += c; \ +    c = (t2 + ((i64)1<<25)) >> 26;  t2 -= c * ((i64)1 << 26);  t3 += c; \ +    c = (t6 + ((i64)1<<25)) >> 26;  t6 -= c * ((i64)1 << 26);  t7 += c; \ +    c = (t3 + ((i64)1<<24)) >> 25;  t3 -= c * ((i64)1 << 25);  t4 += c; \ +    c = (t7 + ((i64)1<<24)) >> 25;  t7 -= c * ((i64)1 << 25);  t8 += c; \ +    c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \ +    c = (t8 + ((i64)1<<25)) >> 26;  t8 -= c * ((i64)1 << 26);  t9 += c; \ +    c = (t9 + ((i64)1<<24)) >> 25;  t9 -= c * ((i64)1 << 25);  t0 += c * 19; \ +    c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \ +    h[0]=(i32)t0;  h[1]=(i32)t1;  h[2]=(i32)t2;  h[3]=(i32)t3;  h[4]=(i32)t4; \ +    h[5]=(i32)t5;  h[6]=(i32)t6;  h[7]=(i32)t7;  h[8]=(i32)t8;  h[9]=(i32)t9 + +// Decodes a field element from a byte buffer. +// mask specifies how many bits we ignore. +// Traditionally we ignore 1. It's useful for EdDSA, +// which uses that bit to denote the sign of x. +// Elligator however uses positive representatives, +// which means ignoring 2 bits instead. +static void fe_frombytes_mask(fe h, const u8 s[32], unsigned nb_mask) +{ +    i32 mask = 0xffffff >> nb_mask; +    i64 t0 =  load32_le(s);                        // t0 < 2^32 +    i64 t1 =  load24_le(s +  4) << 6;              // t1 < 2^30 +    i64 t2 =  load24_le(s +  7) << 5;              // t2 < 2^29 +    i64 t3 =  load24_le(s + 10) << 3;              // t3 < 2^27 +    i64 t4 =  load24_le(s + 13) << 2;              // t4 < 2^26 +    i64 t5 =  load32_le(s + 16);                   // t5 < 2^32 +    i64 t6 =  load24_le(s + 20) << 7;              // t6 < 2^31 +    i64 t7 =  load24_le(s + 23) << 5;              // t7 < 2^29 +    i64 t8 =  load24_le(s + 26) << 4;              // t8 < 2^28 +    i64 t9 = (load24_le(s + 29) & mask) << 2;      // t9 < 2^25 +    FE_CARRY;                                      // Carry precondition OK +} + +static void fe_frombytes(fe h, const u8 s[32]) +{ +    fe_frombytes_mask(h, s, 1); +} + + +// Precondition +//   |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]|  <  1.1 * 2^25 +//   |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]|  <  1.1 * 2^24 +// +// Therefore, |h| < 2^255-19 +// There are two possibilities: +// +// - If h is positive, all we need to do is reduce its individual +//   limbs down to their tight positive range. +// - If h is negative, we also need to add 2^255-19 to it. +//   Or just remove 19 and chop off any excess bit. +static void fe_tobytes(u8 s[32], const fe h) +{ +    i32 t[10]; +    COPY(t, h, 10); +    i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25; +    //                 |t9|                    < 1.1 * 2^24 +    //  -1.1 * 2^24  <  t9                     < 1.1 * 2^24 +    //  -21  * 2^24  <  19 * t9                < 21  * 2^24 +    //  -2^29        <  19 * t9 + 2^24         < 2^29 +    //  -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25 +    //  -16          < (19 * t9 + 2^24) / 2^25 < 16 +    FOR (i, 0, 5) { +        q += t[2*i  ]; q >>= 26; // q = 0 or -1 +        q += t[2*i+1]; q >>= 25; // q = 0 or -1 +    } +    // q =  0 iff h >= 0 +    // q = -1 iff h <  0 +    // Adding q * 19 to h reduces h to its proper range. +    q *= 19;  // Shift carry back to the beginning +    FOR (i, 0, 5) { +        t[i*2  ] += q;  q = t[i*2  ] >> 26;  t[i*2  ] -= q * ((i32)1 << 26); +        t[i*2+1] += q;  q = t[i*2+1] >> 25;  t[i*2+1] -= q * ((i32)1 << 25); +    } +    // h is now fully reduced, and q represents the excess bit. + +    store32_le(s +  0, ((u32)t[0] >>  0) | ((u32)t[1] << 26)); +    store32_le(s +  4, ((u32)t[1] >>  6) | ((u32)t[2] << 19)); +    store32_le(s +  8, ((u32)t[2] >> 13) | ((u32)t[3] << 13)); +    store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] <<  6)); +    store32_le(s + 16, ((u32)t[5] >>  0) | ((u32)t[6] << 25)); +    store32_le(s + 20, ((u32)t[6] >>  7) | ((u32)t[7] << 19)); +    store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12)); +    store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] <<  6)); + +    WIPE_BUFFER(t); +} + +// Precondition +// ------------- +//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26 +//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25 +// +//   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26 +//   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25 +static void fe_mul_small(fe h, const fe f, i32 g) +{ +    i64 t0 = f[0] * (i64) g;  i64 t1 = f[1] * (i64) g; +    i64 t2 = f[2] * (i64) g;  i64 t3 = f[3] * (i64) g; +    i64 t4 = f[4] * (i64) g;  i64 t5 = f[5] * (i64) g; +    i64 t6 = f[6] * (i64) g;  i64 t7 = f[7] * (i64) g; +    i64 t8 = f[8] * (i64) g;  i64 t9 = f[9] * (i64) g; +    // |t0|, |t2|, |t4|, |t6|, |t8|  <  1.65 * 2^26 * 2^31  < 2^58 +    // |t1|, |t3|, |t5|, |t7|, |t9|  <  1.65 * 2^25 * 2^31  < 2^57 + +    FE_CARRY; // Carry precondition OK +} + +// Precondition +// ------------- +//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26 +//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25 +// +//   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26 +//   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25 +static void fe_mul(fe h, const fe f, const fe g) +{ +    // Everything is unrolled and put in temporary variables. +    // We could roll the loop, but that would make curve25519 twice as slow. +    i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; +    i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; +    i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4]; +    i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9]; +    i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2; +    i32 G1 = g1*19;  i32 G2 = g2*19;  i32 G3 = g3*19; +    i32 G4 = g4*19;  i32 G5 = g5*19;  i32 G6 = g6*19; +    i32 G7 = g7*19;  i32 G8 = g8*19;  i32 G9 = g9*19; +    // |F1|, |F3|, |F5|, |F7|, |F9|  <  1.65 * 2^26 +    // |G0|, |G2|, |G4|, |G6|, |G8|  <  2^31 +    // |G1|, |G3|, |G5|, |G7|, |G9|  <  2^30 + +    i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6 +        +    F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1; +    i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7 +        +    f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2; +    i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8 +        +    F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3; +    i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9 +        +    f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4; +    i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0 +        +    F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5; +    i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1 +        +    f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6; +    i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2 +        +    F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7; +    i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3 +        +    f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8; +    i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4 +        +    F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9; +    i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5 +        +    f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0; +    // t0 < 0.67 * 2^61 +    // t1 < 0.41 * 2^61 +    // t2 < 0.52 * 2^61 +    // t3 < 0.32 * 2^61 +    // t4 < 0.38 * 2^61 +    // t5 < 0.22 * 2^61 +    // t6 < 0.23 * 2^61 +    // t7 < 0.13 * 2^61 +    // t8 < 0.09 * 2^61 +    // t9 < 0.03 * 2^61 + +    FE_CARRY; // Everything below 2^62, Carry precondition OK +} + +// Precondition +// ------------- +//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26 +//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25 +// +// Note: we could use fe_mul() for this, but this is significantly faster +static void fe_sq(fe h, const fe f) +{ +    i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; +    i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; +    i32 f0_2  = f0*2;   i32 f1_2  = f1*2;   i32 f2_2  = f2*2;   i32 f3_2 = f3*2; +    i32 f4_2  = f4*2;   i32 f5_2  = f5*2;   i32 f6_2  = f6*2;   i32 f7_2 = f7*2; +    i32 f5_38 = f5*38;  i32 f6_19 = f6*19;  i32 f7_38 = f7*38; +    i32 f8_19 = f8*19;  i32 f9_38 = f9*38; +    // |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2|  <  1.65 * 2^27 +    // |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2|  <  1.65 * 2^26 +    // |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| <  2^31 + +    i64 t0 = f0  *(i64)f0    + f1_2*(i64)f9_38 + f2_2*(i64)f8_19 +        +    f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5  *(i64)f5_38; +    i64 t1 = f0_2*(i64)f1    + f2  *(i64)f9_38 + f3_2*(i64)f8_19 +        +    f4  *(i64)f7_38 + f5_2*(i64)f6_19; +    i64 t2 = f0_2*(i64)f2    + f1_2*(i64)f1    + f3_2*(i64)f9_38 +        +    f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6  *(i64)f6_19; +    i64 t3 = f0_2*(i64)f3    + f1_2*(i64)f2    + f4  *(i64)f9_38 +        +    f5_2*(i64)f8_19 + f6  *(i64)f7_38; +    i64 t4 = f0_2*(i64)f4    + f1_2*(i64)f3_2  + f2  *(i64)f2 +        +    f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7  *(i64)f7_38; +    i64 t5 = f0_2*(i64)f5    + f1_2*(i64)f4    + f2_2*(i64)f3 +        +    f6  *(i64)f9_38 + f7_2*(i64)f8_19; +    i64 t6 = f0_2*(i64)f6    + f1_2*(i64)f5_2  + f2_2*(i64)f4 +        +    f3_2*(i64)f3    + f7_2*(i64)f9_38 + f8  *(i64)f8_19; +    i64 t7 = f0_2*(i64)f7    + f1_2*(i64)f6    + f2_2*(i64)f5 +        +    f3_2*(i64)f4    + f8  *(i64)f9_38; +    i64 t8 = f0_2*(i64)f8    + f1_2*(i64)f7_2  + f2_2*(i64)f6 +        +    f3_2*(i64)f5_2  + f4  *(i64)f4    + f9  *(i64)f9_38; +    i64 t9 = f0_2*(i64)f9    + f1_2*(i64)f8    + f2_2*(i64)f7 +        +    f3_2*(i64)f6    + f4  *(i64)f5_2; +    // t0 < 0.67 * 2^61 +    // t1 < 0.41 * 2^61 +    // t2 < 0.52 * 2^61 +    // t3 < 0.32 * 2^61 +    // t4 < 0.38 * 2^61 +    // t5 < 0.22 * 2^61 +    // t6 < 0.23 * 2^61 +    // t7 < 0.13 * 2^61 +    // t8 < 0.09 * 2^61 +    // t9 < 0.03 * 2^61 + +    FE_CARRY; +} + +//  Parity check.  Returns 0 if even, 1 if odd +static int fe_isodd(const fe f) +{ +    u8 s[32]; +    fe_tobytes(s, f); +    u8 isodd = s[0] & 1; +    WIPE_BUFFER(s); +    return isodd; +} + +// Returns 1 if equal, 0 if not equal +static int fe_isequal(const fe f, const fe g) +{ +    u8 fs[32]; +    u8 gs[32]; +    fe_tobytes(fs, f); +    fe_tobytes(gs, g); +    int isdifferent = crypto_verify32(fs, gs); +    WIPE_BUFFER(fs); +    WIPE_BUFFER(gs); +    return 1 + isdifferent; +} + +// Inverse square root. +// Returns true if x is a square, false otherwise. +// After the call: +//   isr = sqrt(1/x)        if x is a non-zero square. +//   isr = sqrt(sqrt(-1)/x) if x is not a square. +//   isr = 0                if x is zero. +// We do not guarantee the sign of the square root. +// +// Notes: +// Let quartic = x^((p-1)/4) +// +// x^((p-1)/2) = chi(x) +// quartic^2   = chi(x) +// quartic     = sqrt(chi(x)) +// quartic     = 1 or -1 or sqrt(-1) or -sqrt(-1) +// +// Note that x is a square if quartic is 1 or -1 +// There are 4 cases to consider: +// +// if   quartic         = 1  (x is a square) +// then x^((p-1)/4)     = 1 +//      x^((p-5)/4) * x = 1 +//      x^((p-5)/4)     = 1/x +//      x^((p-5)/8)     = sqrt(1/x) or -sqrt(1/x) +// +// if   quartic                = -1  (x is a square) +// then x^((p-1)/4)            = -1 +//      x^((p-5)/4) * x        = -1 +//      x^((p-5)/4)            = -1/x +//      x^((p-5)/8)            = sqrt(-1)   / sqrt(x) +//      x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x) +//      x^((p-5)/8) * sqrt(-1) = -1/sqrt(x) +//      x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x) +// +// if   quartic         = sqrt(-1)  (x is not a square) +// then x^((p-1)/4)     = sqrt(-1) +//      x^((p-5)/4) * x = sqrt(-1) +//      x^((p-5)/4)     = sqrt(-1)/x +//      x^((p-5)/8)     = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x) +// +// Note that the product of two non-squares is always a square: +//   For any non-squares a and b, chi(a) = -1 and chi(b) = -1. +//   Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1. +//   Therefore a*b is a square. +// +//   Since sqrt(-1) and x are both non-squares, their product is a +//   square, and we can compute their square root. +// +// if   quartic                = -sqrt(-1)  (x is not a square) +// then x^((p-1)/4)            = -sqrt(-1) +//      x^((p-5)/4) * x        = -sqrt(-1) +//      x^((p-5)/4)            = -sqrt(-1)/x +//      x^((p-5)/8)            = sqrt(-sqrt(-1)/x) +//      x^((p-5)/8)            = sqrt( sqrt(-1)/x) * sqrt(-1) +//      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2 +//      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1 +//      x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x) +static int invsqrt(fe isr, const fe x) +{ +    fe t0, t1, t2; + +    // t0 = x^((p-5)/8) +    // Can be achieved with a simple double & add ladder, +    // but it would be slower. +    fe_sq(t0, x); +    fe_sq(t1,t0);                   fe_sq(t1, t1);  fe_mul(t1, x, t1); +    fe_mul(t0, t0, t1); +    fe_sq(t0, t0);                                  fe_mul(t0, t1, t0); +    fe_sq(t1, t0);  FOR (i, 1,   5) fe_sq(t1, t1);  fe_mul(t0, t1, t0); +    fe_sq(t1, t0);  FOR (i, 1,  10) fe_sq(t1, t1);  fe_mul(t1, t1, t0); +    fe_sq(t2, t1);  FOR (i, 1,  20) fe_sq(t2, t2);  fe_mul(t1, t2, t1); +    fe_sq(t1, t1);  FOR (i, 1,  10) fe_sq(t1, t1);  fe_mul(t0, t1, t0); +    fe_sq(t1, t0);  FOR (i, 1,  50) fe_sq(t1, t1);  fe_mul(t1, t1, t0); +    fe_sq(t2, t1);  FOR (i, 1, 100) fe_sq(t2, t2);  fe_mul(t1, t2, t1); +    fe_sq(t1, t1);  FOR (i, 1,  50) fe_sq(t1, t1);  fe_mul(t0, t1, t0); +    fe_sq(t0, t0);  FOR (i, 1,   2) fe_sq(t0, t0);  fe_mul(t0, t0, x); + +    // quartic = x^((p-1)/4) +    i32 *quartic = t1; +    fe_sq (quartic, t0); +    fe_mul(quartic, quartic, x); + +    i32 *check = t2; +    fe_0  (check);          int z0 = fe_isequal(x      , check); +    fe_1  (check);          int p1 = fe_isequal(quartic, check); +    fe_neg(check, check );  int m1 = fe_isequal(quartic, check); +    fe_neg(check, sqrtm1);  int ms = fe_isequal(quartic, check); + +    // if quartic == -1 or sqrt(-1) +    // then  isr = x^((p-1)/4) * sqrt(-1) +    // else  isr = x^((p-1)/4) +    fe_mul(isr, t0, sqrtm1); +    fe_ccopy(isr, t0, 1 - (m1 | ms)); + +    WIPE_BUFFER(t0); +    WIPE_BUFFER(t1); +    WIPE_BUFFER(t2); +    return p1 | m1 | z0; +} + +// Inverse in terms of inverse square root. +// Requires two additional squarings to get rid of the sign. +// +//   1/x = x * (+invsqrt(x^2))^2 +//       = x * (-invsqrt(x^2))^2 +// +// A fully optimised exponentiation by p-1 would save 6 field +// multiplications, but it would require more code. +static void fe_invert(fe out, const fe x) +{ +    fe tmp; +    fe_sq(tmp, x); +    invsqrt(tmp, tmp); +    fe_sq(tmp, tmp); +    fe_mul(out, tmp, x); +    WIPE_BUFFER(tmp); +} + +// trim a scalar for scalar multiplication +static void trim_scalar(u8 scalar[32]) +{ +    scalar[ 0] &= 248; +    scalar[31] &= 127; +    scalar[31] |= 64; +} + +// get bit from scalar at position i +static int scalar_bit(const u8 s[32], int i) +{ +    if (i < 0) { return 0; } // handle -1 for sliding windows +    return (s[i>>3] >> (i&7)) & 1; +} + +/////////////// +/// X-25519 /// Taken from SUPERCOP's ref10 implementation. +/////////////// +static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32], +                       int nb_bits) +{ +    // computes the scalar product +    fe x1; +    fe_frombytes(x1, p); + +    // computes the actual scalar product (the result is in x2 and z2) +    fe x2, z2, x3, z3, t0, t1; +    // Montgomery ladder +    // In projective coordinates, to avoid divisions: x = X / Z +    // We don't care about the y coordinate, it's only 1 bit of information +    fe_1(x2);        fe_0(z2); // "zero" point +    fe_copy(x3, x1); fe_1(z3); // "one"  point +    int swap = 0; +    for (int pos = nb_bits-1; pos >= 0; --pos) { +        // constant time conditional swap before ladder step +        int b = scalar_bit(scalar, pos); +        swap ^= b; // xor trick avoids swapping at the end of the loop +        fe_cswap(x2, x3, swap); +        fe_cswap(z2, z3, swap); +        swap = b;  // anticipates one last swap after the loop + +        // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3) +        // with differential addition +        fe_sub(t0, x3, z3); +        fe_sub(t1, x2, z2); +        fe_add(x2, x2, z2); +        fe_add(z2, x3, z3); +        fe_mul(z3, t0, x2); +        fe_mul(z2, z2, t1); +        fe_sq (t0, t1    ); +        fe_sq (t1, x2    ); +        fe_add(x3, z3, z2); +        fe_sub(z2, z3, z2); +        fe_mul(x2, t1, t0); +        fe_sub(t1, t1, t0); +        fe_sq (z2, z2    ); +        fe_mul_small(z3, t1, 121666); +        fe_sq (x3, x3    ); +        fe_add(t0, t0, z3); +        fe_mul(z3, x1, z2); +        fe_mul(z2, t1, t0); +    } +    // last swap is necessary to compensate for the xor trick +    // Note: after this swap, P3 == P2 + P1. +    fe_cswap(x2, x3, swap); +    fe_cswap(z2, z3, swap); + +    // normalises the coordinates: x == X / Z +    fe_invert(z2, z2); +    fe_mul(x2, x2, z2); +    fe_tobytes(q, x2); + +    WIPE_BUFFER(x1); +    WIPE_BUFFER(x2);  WIPE_BUFFER(z2);  WIPE_BUFFER(t0); +    WIPE_BUFFER(x3);  WIPE_BUFFER(z3);  WIPE_BUFFER(t1); +} + +void crypto_x25519(u8       raw_shared_secret[32], +                   const u8 your_secret_key  [32], +                   const u8 their_public_key [32]) +{ +    // restrict the possible scalar values +    u8 e[32]; +    COPY(e, your_secret_key, 32); +    trim_scalar(e); +    scalarmult(raw_shared_secret, e, their_public_key, 255); +    WIPE_BUFFER(e); +} + +void crypto_x25519_public_key(u8       public_key[32], +                              const u8 secret_key[32]) +{ +    static const u8 base_point[32] = {9}; +    crypto_x25519(public_key, secret_key, base_point); +} + +/////////////////////////// +/// Arithmetic modulo L /// +/////////////////////////// +static const u32 L[8] = {0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de, +                         0x00000000, 0x00000000, 0x00000000, 0x10000000,}; + +//  p = a*b + p +static void multiply(u32 p[16], const u32 a[8], const u32 b[8]) +{ +    FOR (i, 0, 8) { +        u64 carry = 0; +        FOR (j, 0, 8) { +            carry  += p[i+j] + (u64)a[i] * b[j]; +            p[i+j]  = (u32)carry; +            carry >>= 32; +        } +        p[i+8] = (u32)carry; +    } +} + +static int is_above_l(const u32 x[8]) +{ +    // We work with L directly, in a 2's complement encoding +    // (-L == ~L + 1) +    u64 carry = 1; +    FOR (i, 0, 8) { +        carry  += (u64)x[i] + (~L[i] & 0xffffffff); +        carry >>= 32; +    } +    return (int)carry; // carry is either 0 or 1 +} + +// Final reduction modulo L, by conditionally removing L. +// if x < l     , then r = x +// if l <= x 2*l, then r = x-l +// otherwise the result will be wrong +static void remove_l(u32 r[8], const u32 x[8]) +{ +    u64 carry = is_above_l(x); +    u32 mask  = ~(u32)carry + 1; // carry == 0 or 1 +    FOR (i, 0, 8) { +        carry += (u64)x[i] + (~L[i] & mask); +        r[i]   = (u32)carry; +        carry >>= 32; +    } +} + +// Full reduction modulo L (Barrett reduction) +static void mod_l(u8 reduced[32], const u32 x[16]) +{ +    static const u32 r[9] = {0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d, +                             0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,}; +    // xr = x * r +    u32 xr[25] = {0}; +    FOR (i, 0, 9) { +        u64 carry = 0; +        FOR (j, 0, 16) { +            carry  += xr[i+j] + (u64)r[i] * x[j]; +            xr[i+j] = (u32)carry; +            carry >>= 32; +        } +        xr[i+16] = (u32)carry; +    } +    // xr = floor(xr / 2^512) * L +    // Since the result is guaranteed to be below 2*L, +    // it is enough to only compute the first 256 bits. +    // The division is performed by saying xr[i+16]. (16 * 32 = 512) +    ZERO(xr, 8); +    FOR (i, 0, 8) { +        u64 carry = 0; +        FOR (j, 0, 8-i) { +            carry   += xr[i+j] + (u64)xr[i+16] * L[j]; +            xr[i+j] = (u32)carry; +            carry >>= 32; +        } +    } +    // xr = x - xr +    u64 carry = 1; +    FOR (i, 0, 8) { +        carry  += (u64)x[i] + (~xr[i] & 0xffffffff); +        xr[i]   = (u32)carry; +        carry >>= 32; +    } +    // Final reduction modulo L (conditional subtraction) +    remove_l(xr, xr); +    store32_le_buf(reduced, xr, 8); + +    WIPE_BUFFER(xr); +} + +static void reduce(u8 r[64]) +{ +    u32 x[16]; +    load32_le_buf(x, r, 16); +    mod_l(r, x); +    WIPE_BUFFER(x); +} + +// r = (a * b) + c +static void mul_add(u8 r[32], const u8 a[32], const u8 b[32], const u8 c[32]) +{ +    u32 A[8];  load32_le_buf(A, a, 8); +    u32 B[8];  load32_le_buf(B, b, 8); +    u32 p[16]; load32_le_buf(p, c, 8);  ZERO(p + 8, 8); +    multiply(p, A, B); +    mod_l(r, p); +    WIPE_BUFFER(p); +    WIPE_BUFFER(A); +    WIPE_BUFFER(B); +} + +/////////////// +/// Ed25519 /// +/////////////// + +// Point (group element, ge) in a twisted Edwards curve, +// in extended projective coordinates. +// ge        : x  = X/Z, y  = Y/Z, T  = XY/Z +// ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2 +// ge_precomp: Z  = 1 +typedef struct { fe X;  fe Y;  fe Z; fe T;  } ge; +typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached; +typedef struct { fe Yp; fe Ym;       fe T2; } ge_precomp; + +static void ge_zero(ge *p) +{ +    fe_0(p->X); +    fe_1(p->Y); +    fe_1(p->Z); +    fe_0(p->T); +} + +static void ge_tobytes(u8 s[32], const ge *h) +{ +    fe recip, x, y; +    fe_invert(recip, h->Z); +    fe_mul(x, h->X, recip); +    fe_mul(y, h->Y, recip); +    fe_tobytes(s, y); +    s[31] ^= fe_isodd(x) << 7; + +    WIPE_BUFFER(recip); +    WIPE_BUFFER(x); +    WIPE_BUFFER(y); +} + +// h = -s, where s is a point encoded in 32 bytes +// +// Variable time!  Inputs must not be secret! +// => Use only to *check* signatures. +// +// From the specifications: +//   The encoding of s contains y and the sign of x +//   x = sqrt((y^2 - 1) / (d*y^2 + 1)) +// In extended coordinates: +//   X = x, Y = y, Z = 1, T = x*y +// +//    Note that num * den is a square iff num / den is a square +//    If num * den is not a square, the point was not on the curve. +// From the above: +//   Let num =   y^2 - 1 +//   Let den = d*y^2 + 1 +//   x = sqrt((y^2 - 1) / (d*y^2 + 1)) +//   x = sqrt(num / den) +//   x = sqrt(num^2 / (num * den)) +//   x = num * sqrt(1 / (num * den)) +// +// Therefore, we can just compute: +//   num =   y^2 - 1 +//   den = d*y^2 + 1 +//   isr = invsqrt(num * den)  // abort if not square +//   x   = num * isr +// Finally, negate x if its sign is not as specified. +static int ge_frombytes_neg_vartime(ge *h, const u8 s[32]) +{ +    fe_frombytes(h->Y, s); +    fe_1(h->Z); +    fe_sq (h->T, h->Y);        // t =   y^2 +    fe_mul(h->X, h->T, d   );  // x = d*y^2 +    fe_sub(h->T, h->T, h->Z);  // t =   y^2 - 1 +    fe_add(h->X, h->X, h->Z);  // x = d*y^2 + 1 +    fe_mul(h->X, h->T, h->X);  // x = (y^2 - 1) * (d*y^2 + 1) +    int is_square = invsqrt(h->X, h->X); +    if (!is_square) { +        return -1;             // Not on the curve, abort +    } +    fe_mul(h->X, h->T, h->X);  // x = sqrt((y^2 - 1) / (d*y^2 + 1)) +    if (fe_isodd(h->X) == (s[31] >> 7)) { +        fe_neg(h->X, h->X); +    } +    fe_mul(h->T, h->X, h->Y); +    return 0; +} + +static void ge_cache(ge_cached *c, const ge *p) +{ +    fe_add (c->Yp, p->Y, p->X); +    fe_sub (c->Ym, p->Y, p->X); +    fe_copy(c->Z , p->Z      ); +    fe_mul (c->T2, p->T, D2  ); +} + +// Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_add(ge *s, const ge *p, const ge_cached *q) +{ +    fe a, b; +    fe_add(a   , p->Y, p->X ); +    fe_sub(b   , p->Y, p->X ); +    fe_mul(a   , a   , q->Yp); +    fe_mul(b   , b   , q->Ym); +    fe_add(s->Y, a   , b    ); +    fe_sub(s->X, a   , b    ); + +    fe_add(s->Z, p->Z, p->Z ); +    fe_mul(s->Z, s->Z, q->Z ); +    fe_mul(s->T, p->T, q->T2); +    fe_add(a   , s->Z, s->T ); +    fe_sub(b   , s->Z, s->T ); + +    fe_mul(s->T, s->X, s->Y); +    fe_mul(s->X, s->X, b   ); +    fe_mul(s->Y, s->Y, a   ); +    fe_mul(s->Z, a   , b   ); +} + +// Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_sub(ge *s, const ge *p, const ge_cached *q) +{ +    ge_cached neg; +    fe_copy(neg.Ym, q->Yp); +    fe_copy(neg.Yp, q->Ym); +    fe_copy(neg.Z , q->Z ); +    fe_neg (neg.T2, q->T2); +    ge_add(s, p, &neg); +} + +static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b) +{ +    fe_add(a   , p->Y, p->X ); +    fe_sub(b   , p->Y, p->X ); +    fe_mul(a   , a   , q->Yp); +    fe_mul(b   , b   , q->Ym); +    fe_add(s->Y, a   , b    ); +    fe_sub(s->X, a   , b    ); + +    fe_add(s->Z, p->Z, p->Z ); +    fe_mul(s->T, p->T, q->T2); +    fe_add(a   , s->Z, s->T ); +    fe_sub(b   , s->Z, s->T ); + +    fe_mul(s->T, s->X, s->Y); +    fe_mul(s->X, s->X, b   ); +    fe_mul(s->Y, s->Y, a   ); +    fe_mul(s->Z, a   , b   ); +} + +// Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b) +{ +    ge_precomp neg; +    fe_copy(neg.Ym, q->Yp); +    fe_copy(neg.Yp, q->Ym); +    fe_neg (neg.T2, q->T2); +    ge_madd(s, p, &neg, a, b); +} + +static void ge_double(ge *s, const ge *p, ge *q) +{ +    fe_sq (q->X, p->X); +    fe_sq (q->Y, p->Y); +    fe_sq (q->Z, p->Z);          // qZ = pZ^2 +    fe_mul_small(q->Z, q->Z, 2); // qZ = pZ^2 * 2 +    fe_add(q->T, p->X, p->Y); +    fe_sq (s->T, q->T); +    fe_add(q->T, q->Y, q->X); +    fe_sub(q->Y, q->Y, q->X); +    fe_sub(q->X, s->T, q->T); +    fe_sub(q->Z, q->Z, q->Y); + +    fe_mul(s->X, q->X , q->Z); +    fe_mul(s->Y, q->T , q->Y); +    fe_mul(s->Z, q->Y , q->Z); +    fe_mul(s->T, q->X , q->T); +} + +// 5-bit signed window in cached format (Niels coordinates, Z=1) +static const ge_precomp b_window[8] = { +    {{25967493,-14356035,29566456,3660896,-12694345, +      4014787,27544626,-11754271,-6079156,2047605,}, +     {-12545711,934262,-2722910,3049990,-727428, +      9406986,12720692,5043384,19500929,-15469378,}, +     {-8738181,4489570,9688441,-14785194,10184609, +      -12363380,29287919,11864899,-24514362,-4438546,},}, +    {{15636291,-9688557,24204773,-7912398,616977, +      -16685262,27787600,-14772189,28944400,-1550024,}, +     {16568933,4717097,-11556148,-1102322,15682896, +      -11807043,16354577,-11775962,7689662,11199574,}, +     {30464156,-5976125,-11779434,-15670865,23220365, +      15915852,7512774,10017326,-17749093,-9920357,},}, +    {{10861363,11473154,27284546,1981175,-30064349, +      12577861,32867885,14515107,-15438304,10819380,}, +     {4708026,6336745,20377586,9066809,-11272109, +      6594696,-25653668,12483688,-12668491,5581306,}, +     {19563160,16186464,-29386857,4097519,10237984, +      -4348115,28542350,13850243,-23678021,-15815942,},}, +    {{5153746,9909285,1723747,-2777874,30523605, +      5516873,19480852,5230134,-23952439,-15175766,}, +     {-30269007,-3463509,7665486,10083793,28475525, +      1649722,20654025,16520125,30598449,7715701,}, +     {28881845,14381568,9657904,3680757,-20181635, +      7843316,-31400660,1370708,29794553,-1409300,},}, +    {{-22518993,-6692182,14201702,-8745502,-23510406, +      8844726,18474211,-1361450,-13062696,13821877,}, +     {-6455177,-7839871,3374702,-4740862,-27098617, +      -10571707,31655028,-7212327,18853322,-14220951,}, +     {4566830,-12963868,-28974889,-12240689,-7602672, +      -2830569,-8514358,-10431137,2207753,-3209784,},}, +    {{-25154831,-4185821,29681144,7868801,-6854661, +      -9423865,-12437364,-663000,-31111463,-16132436,}, +     {25576264,-2703214,7349804,-11814844,16472782, +      9300885,3844789,15725684,171356,6466918,}, +     {23103977,13316479,9739013,-16149481,817875, +      -15038942,8965339,-14088058,-30714912,16193877,},}, +    {{-33521811,3180713,-2394130,14003687,-16903474, +      -16270840,17238398,4729455,-18074513,9256800,}, +     {-25182317,-4174131,32336398,5036987,-21236817, +      11360617,22616405,9761698,-19827198,630305,}, +     {-13720693,2639453,-24237460,-7406481,9494427, +      -5774029,-6554551,-15960994,-2449256,-14291300,},}, +    {{-3151181,-5046075,9282714,6866145,-31907062, +      -863023,-18940575,15033784,25105118,-7894876,}, +     {-24326370,15950226,-31801215,-14592823,-11662737, +      -5090925,1573892,-2625887,2198790,-15804619,}, +     {-3099351,10324967,-2241613,7453183,-5446979, +      -2735503,-13812022,-16236442,-32461234,-12290683,},}, +}; + +// Incremental sliding windows (left to right) +// Based on Roberto Maria Avanzi[2005] +typedef struct { +    i16 next_index; // position of the next signed digit +    i8  next_digit; // next signed digit (odd number below 2^window_width) +    u8  next_check; // point at which we must check for a new window +} slide_ctx; + +static void slide_init(slide_ctx *ctx, const u8 scalar[32]) +{ +    // scalar is guaranteed to be below L, either because we checked (s), +    // or because we reduced it modulo L (h_ram). L is under 2^253, so +    // so bits 253 to 255 are guaranteed to be zero. No need to test them. +    // +    // Note however that L is very close to 2^252, so bit 252 is almost +    // always zero.  If we were to start at bit 251, the tests wouldn't +    // catch the off-by-one error (constructing one that does would be +    // prohibitively expensive). +    // +    // We should still check bit 252, though. +    int i = 252; +    while (i > 0 && scalar_bit(scalar, i) == 0) { +        i--; +    } +    ctx->next_check = (u8)(i + 1); +    ctx->next_index = -1; +    ctx->next_digit = -1; +} + +static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32]) +{ +    if (i == ctx->next_check) { +        if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) { +            ctx->next_check--; +        } else { +            // compute digit of next window +            int w = MIN(width, i + 1); +            int v = -(scalar_bit(scalar, i) << (w-1)); +            FOR_T (int, j, 0, w-1) { +                v += scalar_bit(scalar, i-(w-1)+j) << j; +            } +            v += scalar_bit(scalar, i-w); +            int lsb = v & (~v + 1);            // smallest bit of v +            int s   = (   ((lsb & 0xAA) != 0)  // log2(lsb) +                       | (((lsb & 0xCC) != 0) << 1) +                       | (((lsb & 0xF0) != 0) << 2)); +            ctx->next_index  = (i16)(i-(w-1)+s); +            ctx->next_digit  = (i8) (v >> s   ); +            ctx->next_check -= (u8) w; +        } +    } +    return i == ctx->next_index ? ctx->next_digit: 0; +} + +#define P_W_WIDTH 3 // Affects the size of the stack +#define B_W_WIDTH 5 // Affects the size of the binary +#define P_W_SIZE  (1<<(P_W_WIDTH-2)) + +// P = [b]B + [p]P, where B is the base point +// +// Variable time! Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_double_scalarmult_vartime(ge *P, const u8 p[32], const u8 b[32]) +{ +    // cache P window for addition +    ge_cached cP[P_W_SIZE]; +    { +        ge P2, tmp; +        ge_double(&P2, P, &tmp); +        ge_cache(&cP[0], P); +        FOR (i, 1, P_W_SIZE) { +            ge_add(&tmp, &P2, &cP[i-1]); +            ge_cache(&cP[i], &tmp); +        } +    } + +    // Merged double and add ladder, fused with sliding +    slide_ctx p_slide;  slide_init(&p_slide, p); +    slide_ctx b_slide;  slide_init(&b_slide, b); +    int i = MAX(p_slide.next_check, b_slide.next_check); +    ge *sum = P; +    ge_zero(sum); +    while (i >= 0) { +        ge tmp; +        ge_double(sum, sum, &tmp); +        int p_digit = slide_step(&p_slide, P_W_WIDTH, i, p); +        int b_digit = slide_step(&b_slide, B_W_WIDTH, i, b); +        if (p_digit > 0) { ge_add(sum, sum, &cP[ p_digit / 2]); } +        if (p_digit < 0) { ge_sub(sum, sum, &cP[-p_digit / 2]); } +        fe t1, t2; +        if (b_digit > 0) { ge_madd(sum, sum, b_window +  b_digit/2, t1, t2); } +        if (b_digit < 0) { ge_msub(sum, sum, b_window + -b_digit/2, t1, t2); } +        i--; +    } +} + +// 5-bit signed comb in cached format (Niels coordinates, Z=1) +static const ge_precomp b_comb_low[8] = { +    {{-6816601,-2324159,-22559413,124364,18015490, +      8373481,19993724,1979872,-18549925,9085059,}, +     {10306321,403248,14839893,9633706,8463310, +      -8354981,-14305673,14668847,26301366,2818560,}, +     {-22701500,-3210264,-13831292,-2927732,-16326337, +      -14016360,12940910,177905,12165515,-2397893,},}, +    {{-12282262,-7022066,9920413,-3064358,-32147467, +      2927790,22392436,-14852487,2719975,16402117,}, +     {-7236961,-4729776,2685954,-6525055,-24242706, +      -15940211,-6238521,14082855,10047669,12228189,}, +     {-30495588,-12893761,-11161261,3539405,-11502464, +      16491580,-27286798,-15030530,-7272871,-15934455,},}, +    {{17650926,582297,-860412,-187745,-12072900, +      -10683391,-20352381,15557840,-31072141,-5019061,}, +     {-6283632,-2259834,-4674247,-4598977,-4089240, +      12435688,-31278303,1060251,6256175,10480726,}, +     {-13871026,2026300,-21928428,-2741605,-2406664, +      -8034988,7355518,15733500,-23379862,7489131,},}, +    {{6883359,695140,23196907,9644202,-33430614, +      11354760,-20134606,6388313,-8263585,-8491918,}, +     {-7716174,-13605463,-13646110,14757414,-19430591, +      -14967316,10359532,-11059670,-21935259,12082603,}, +     {-11253345,-15943946,10046784,5414629,24840771, +      8086951,-6694742,9868723,15842692,-16224787,},}, +    {{9639399,11810955,-24007778,-9320054,3912937, +      -9856959,996125,-8727907,-8919186,-14097242,}, +     {7248867,14468564,25228636,-8795035,14346339, +      8224790,6388427,-7181107,6468218,-8720783,}, +     {15513115,15439095,7342322,-10157390,18005294, +      -7265713,2186239,4884640,10826567,7135781,},}, +    {{-14204238,5297536,-5862318,-6004934,28095835, +      4236101,-14203318,1958636,-16816875,3837147,}, +     {-5511166,-13176782,-29588215,12339465,15325758, +      -15945770,-8813185,11075932,-19608050,-3776283,}, +     {11728032,9603156,-4637821,-5304487,-7827751, +      2724948,31236191,-16760175,-7268616,14799772,},}, +    {{-28842672,4840636,-12047946,-9101456,-1445464, +      381905,-30977094,-16523389,1290540,12798615,}, +     {27246947,-10320914,14792098,-14518944,5302070, +      -8746152,-3403974,-4149637,-27061213,10749585,}, +     {25572375,-6270368,-15353037,16037944,1146292, +      32198,23487090,9585613,24714571,-1418265,},}, +    {{19844825,282124,-17583147,11004019,-32004269, +      -2716035,6105106,-1711007,-21010044,14338445,}, +     {8027505,8191102,-18504907,-12335737,25173494, +      -5923905,15446145,7483684,-30440441,10009108,}, +     {-14134701,-4174411,10246585,-14677495,33553567, +      -14012935,23366126,15080531,-7969992,7663473,},}, +}; + +static const ge_precomp b_comb_high[8] = { +    {{33055887,-4431773,-521787,6654165,951411, +      -6266464,-5158124,6995613,-5397442,-6985227,}, +     {4014062,6967095,-11977872,3960002,8001989, +      5130302,-2154812,-1899602,-31954493,-16173976,}, +     {16271757,-9212948,23792794,731486,-25808309, +      -3546396,6964344,-4767590,10976593,10050757,},}, +    {{2533007,-4288439,-24467768,-12387405,-13450051, +      14542280,12876301,13893535,15067764,8594792,}, +     {20073501,-11623621,3165391,-13119866,13188608, +      -11540496,-10751437,-13482671,29588810,2197295,}, +     {-1084082,11831693,6031797,14062724,14748428, +      -8159962,-20721760,11742548,31368706,13161200,},}, +    {{2050412,-6457589,15321215,5273360,25484180, +      124590,-18187548,-7097255,-6691621,-14604792,}, +     {9938196,2162889,-6158074,-1711248,4278932, +      -2598531,-22865792,-7168500,-24323168,11746309,}, +     {-22691768,-14268164,5965485,9383325,20443693, +      5854192,28250679,-1381811,-10837134,13717818,},}, +    {{-8495530,16382250,9548884,-4971523,-4491811, +      -3902147,6182256,-12832479,26628081,10395408,}, +     {27329048,-15853735,7715764,8717446,-9215518, +      -14633480,28982250,-5668414,4227628,242148,}, +     {-13279943,-7986904,-7100016,8764468,-27276630, +      3096719,29678419,-9141299,3906709,11265498,},}, +    {{11918285,15686328,-17757323,-11217300,-27548967, +      4853165,-27168827,6807359,6871949,-1075745,}, +     {-29002610,13984323,-27111812,-2713442,28107359, +      -13266203,6155126,15104658,3538727,-7513788,}, +     {14103158,11233913,-33165269,9279850,31014152, +      4335090,-1827936,4590951,13960841,12787712,},}, +    {{1469134,-16738009,33411928,13942824,8092558, +      -8778224,-11165065,1437842,22521552,-2792954,}, +     {31352705,-4807352,-25327300,3962447,12541566, +      -9399651,-27425693,7964818,-23829869,5541287,}, +     {-25732021,-6864887,23848984,3039395,-9147354, +      6022816,-27421653,10590137,25309915,-1584678,},}, +    {{-22951376,5048948,31139401,-190316,-19542447, +      -626310,-17486305,-16511925,-18851313,-12985140,}, +     {-9684890,14681754,30487568,7717771,-10829709, +      9630497,30290549,-10531496,-27798994,-13812825,}, +     {5827835,16097107,-24501327,12094619,7413972, +      11447087,28057551,-1793987,-14056981,4359312,},}, +    {{26323183,2342588,-21887793,-1623758,-6062284, +      2107090,-28724907,9036464,-19618351,-13055189,}, +     {-29697200,14829398,-4596333,14220089,-30022969, +      2955645,12094100,-13693652,-5941445,7047569,}, +     {-3201977,14413268,-12058324,-16417589,-9035655, +      -7224648,9258160,1399236,30397584,-5684634,},}, +}; + +static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b, +                       const ge_precomp comb[8], const u8 scalar[32], int i) +{ +    u8 teeth = (u8)((scalar_bit(scalar, i)          ) + +                    (scalar_bit(scalar, i + 32) << 1) + +                    (scalar_bit(scalar, i + 64) << 2) + +                    (scalar_bit(scalar, i + 96) << 3)); +    u8 high  = teeth >> 3; +    u8 index = (teeth ^ (high - 1)) & 7; +    FOR (j, 0, 8) { +        i32 select = 1 & (((j ^ index) - 1) >> 8); +        fe_ccopy(tmp_c->Yp, comb[j].Yp, select); +        fe_ccopy(tmp_c->Ym, comb[j].Ym, select); +        fe_ccopy(tmp_c->T2, comb[j].T2, select); +    } +    fe_neg(tmp_a, tmp_c->T2); +    fe_cswap(tmp_c->T2, tmp_a    , high ^ 1); +    fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1); +    ge_madd(p, p, tmp_c, tmp_a, tmp_b); +} + +// p = [scalar]B, where B is the base point +static void ge_scalarmult_base(ge *p, const u8 scalar[32]) +{ +    // twin 4-bits signed combs, from Mike Hamburg's +    // Fast and compact elliptic-curve cryptography (2012) +    // 1 / 2 modulo L +    static const u8 half_mod_L[32] = { +        247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10, +        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8, }; +    // (2^256 - 1) / 2 modulo L +    static const u8 half_ones[32] = { +        142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99, +        255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7, }; + +    // All bits set form: 1 means 1, 0 means -1 +    u8 s_scalar[32]; +    mul_add(s_scalar, scalar, half_mod_L, half_ones); + +    // Double and add ladder +    fe tmp_a, tmp_b;  // temporaries for addition +    ge_precomp tmp_c; // temporary for comb lookup +    ge tmp_d;         // temporary for doubling +    fe_1(tmp_c.Yp); +    fe_1(tmp_c.Ym); +    fe_0(tmp_c.T2); + +    // Save a double on the first iteration +    ge_zero(p); +    lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31); +    lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128); +    // Regular double & add for the rest +    for (int i = 30; i >= 0; i--) { +        ge_double(p, p, &tmp_d); +        lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i); +        lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128); +    } +    // Note: we could save one addition at the end if we assumed the +    // scalar fit in 252 bits.  Which it does in practice if it is +    // selected at random.  However, non-random, non-hashed scalars +    // *can* overflow 252 bits in practice.  Better account for that +    // than leaving that kind of subtle corner case. + +    WIPE_BUFFER(tmp_a);  WIPE_CTX(&tmp_d); +    WIPE_BUFFER(tmp_b);  WIPE_CTX(&tmp_c); +    WIPE_BUFFER(s_scalar); +} + +void crypto_sign_public_key_custom_hash(u8       public_key[32], +                                        const u8 secret_key[32], +                                        const crypto_sign_vtable *hash) +{ +    u8 a[64]; +    hash->hash(a, secret_key, 32); +    trim_scalar(a); +    ge A; +    ge_scalarmult_base(&A, a); +    ge_tobytes(public_key, &A); +    WIPE_BUFFER(a); +    WIPE_CTX(&A); +} + +void crypto_sign_public_key(u8 public_key[32], const u8 secret_key[32]) +{ +    crypto_sign_public_key_custom_hash(public_key, secret_key, +                                       &crypto_blake2b_vtable); +} + +void crypto_sign_init_first_pass_custom_hash(crypto_sign_ctx_abstract *ctx, +                                             const u8 secret_key[32], +                                             const u8 public_key[32], +                                             const crypto_sign_vtable *hash) +{ +    ctx->hash  = hash; // set vtable +    u8 *a      = ctx->buf; +    u8 *prefix = ctx->buf + 32; +    ctx->hash->hash(a, secret_key, 32); +    trim_scalar(a); + +    if (public_key == 0) { +        crypto_sign_public_key_custom_hash(ctx->pk, secret_key, ctx->hash); +    } else { +        COPY(ctx->pk, public_key, 32); +    } + +    // Deterministic part of EdDSA: Construct a nonce by hashing the message +    // instead of generating a random number. +    // An actual random number would work just fine, and would save us +    // the trouble of hashing the message twice.  If we did that +    // however, the user could fuck it up and reuse the nonce. +    ctx->hash->init  (ctx); +    ctx->hash->update(ctx, prefix , 32); +} + +void crypto_sign_init_first_pass(crypto_sign_ctx_abstract *ctx, +                                 const u8 secret_key[32], +                                 const u8 public_key[32]) +{ +    crypto_sign_init_first_pass_custom_hash(ctx, secret_key, public_key, +                                            &crypto_blake2b_vtable); +} + +void crypto_sign_update(crypto_sign_ctx_abstract *ctx, +                        const u8 *msg, size_t msg_size) +{ +    ctx->hash->update(ctx, msg, msg_size); +} + +void crypto_sign_init_second_pass(crypto_sign_ctx_abstract *ctx) +{ +    u8 *r        = ctx->buf + 32; +    u8 *half_sig = ctx->buf + 64; +    ctx->hash->final(ctx, r); +    reduce(r); + +    // first half of the signature = "random" nonce times the base point +    ge R; +    ge_scalarmult_base(&R, r); +    ge_tobytes(half_sig, &R); +    WIPE_CTX(&R); + +    // Hash R, the public key, and the message together. +    // It cannot be done in parallel with the first hash. +    ctx->hash->init  (ctx); +    ctx->hash->update(ctx, half_sig, 32); +    ctx->hash->update(ctx, ctx->pk , 32); +} + +void crypto_sign_final(crypto_sign_ctx_abstract *ctx, u8 signature[64]) +{ +    u8 *a        = ctx->buf; +    u8 *r        = ctx->buf + 32; +    u8 *half_sig = ctx->buf + 64; +    u8  h_ram[64]; +    ctx->hash->final(ctx, h_ram); +    reduce(h_ram); +    COPY(signature, half_sig, 32); +    mul_add(signature + 32, h_ram, a, r); // s = h_ram * a + r +    WIPE_BUFFER(h_ram); +    crypto_wipe(ctx, ctx->hash->ctx_size); +} + +void crypto_sign(u8        signature[64], +                 const u8  secret_key[32], +                 const u8  public_key[32], +                 const u8 *message, size_t message_size) +{ +    crypto_sign_ctx ctx; +    crypto_sign_ctx_abstract *actx = (crypto_sign_ctx_abstract*)&ctx; +    crypto_sign_init_first_pass (actx, secret_key, public_key); +    crypto_sign_update          (actx, message, message_size); +    crypto_sign_init_second_pass(actx); +    crypto_sign_update          (actx, message, message_size); +    crypto_sign_final           (actx, signature); +} + +void crypto_check_init_custom_hash(crypto_check_ctx_abstract *ctx, +                                   const u8 signature[64], +                                   const u8 public_key[32], +                                   const crypto_sign_vtable *hash) +{ +    ctx->hash = hash; // set vtable +    COPY(ctx->buf, signature , 64); +    COPY(ctx->pk , public_key, 32); +    ctx->hash->init  (ctx); +    ctx->hash->update(ctx, signature , 32); +    ctx->hash->update(ctx, public_key, 32); +} + +void crypto_check_init(crypto_check_ctx_abstract *ctx, const u8 signature[64], +                       const u8 public_key[32]) +{ +    crypto_check_init_custom_hash(ctx, signature, public_key, +                                  &crypto_blake2b_vtable); +} + +void crypto_check_update(crypto_check_ctx_abstract *ctx, +                         const u8 *msg, size_t msg_size) +{ +    ctx->hash->update(ctx, msg, msg_size); +} + +int crypto_check_final(crypto_check_ctx_abstract *ctx) +{ +    u8 *s = ctx->buf + 32; // s +    u8  h_ram[64]; +    u32 s32[8];            // s (different encoding) +    ge  A; + +    ctx->hash->final(ctx, h_ram); +    reduce(h_ram); +    load32_le_buf(s32, s, 8); +    if (ge_frombytes_neg_vartime(&A, ctx->pk) ||  // A = -pk +        is_above_l(s32)) {                        // prevent s malleability +        return -1; +    } +    ge_double_scalarmult_vartime(&A, h_ram, s);   // A = [s]B - [h_ram]pk +    ge_tobytes(ctx->pk, &A);                      // R_check = A +    return crypto_verify32(ctx->buf, ctx->pk);    // R == R_check ? OK : fail +} + +int crypto_check(const u8  signature[64], const u8 public_key[32], +                 const u8 *message, size_t message_size) +{ +    crypto_check_ctx ctx; +    crypto_check_ctx_abstract *actx = (crypto_check_ctx_abstract*)&ctx; +    crypto_check_init  (actx, signature, public_key); +    crypto_check_update(actx, message, message_size); +    return crypto_check_final(actx); +} + +/////////////////////// +/// EdDSA to X25519 /// +/////////////////////// +void crypto_from_eddsa_private(u8 x25519[32], const u8 eddsa[32]) +{ +    u8 a[64]; +    crypto_blake2b(a, eddsa, 32); +    COPY(x25519, a, 32); +    WIPE_BUFFER(a); +} + +void crypto_from_eddsa_public(u8 x25519[32], const u8 eddsa[32]) +{ +    fe t1, t2; +    fe_frombytes(t2, eddsa); +    fe_add(t1, fe_one, t2); +    fe_sub(t2, fe_one, t2); +    fe_invert(t2, t2); +    fe_mul(t1, t1, t2); +    fe_tobytes(x25519, t1); +    WIPE_BUFFER(t1); +    WIPE_BUFFER(t2); +} + +///////////////////////////////////////////// +/// Dirty ephemeral public key generation /// +///////////////////////////////////////////// + +// Those functions generates a public key, *without* clearing the +// cofactor.  Sending that key over the network leaks 3 bits of the +// private key.  Use only to generate ephemeral keys that will be hidden +// with crypto_curve_to_hidden(). +// +// The public key is otherwise compatible with crypto_x25519() and +// crypto_key_exchange() (those properly clear the cofactor). +// +// Note that the distribution of the resulting public keys is almost +// uniform.  Flipping the sign of the v coordinate (not provided by this +// function), covers the entire key space almost perfectly, where +// "almost" means a 2^-128 bias (undetectable).  This uniformity is +// needed to ensure the proper randomness of the resulting +// representatives (once we apply crypto_curve_to_hidden()). +// +// Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not +// to be confused with the prime order of the main subgroup, L, which is +// 8 times less than that). +// +// Generating all points would require us to multiply a point of order C +// (the base point plus any point of order 8) by all scalars from 0 to +// C-1.  Clamping limits us to scalars between 2^254 and 2^255 - 1. But +// by negating the resulting point at random, we also cover scalars from +// -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e). +// +// In practice: +// - Scalars from 0         to e + 1     are never generated +// - Scalars from 2^255     to 2^255 + e are never generated +// - Scalars from 2^254 + 1 to 2^254 + e are generated twice +// +// Since e < 2^128, detecting this bias requires observing over 2^100 +// representatives from a given source (this will never happen), *and* +// recovering enough of the private key to determine that they do, or do +// not, belong to the biased set (this practically requires solving +// discrete logarithm, which is conjecturally intractable). +// +// In practice, this means the bias is impossible to detect. + +// s + (x*L) % 8*L +// Guaranteed to fit in 256 bits iff s fits in 255 bits. +//   L             < 2^253 +//   x%8           < 2^3 +//   L * (x%8)     < 2^255 +//   s             < 2^255 +//   s + L * (x%8) < 2^256 +static void add_xl(u8 s[32], u8 x) +{ +    u64 mod8  = x & 7; +    u64 carry = 0; +    FOR (i , 0, 8) { +        carry = carry + load32_le(s + 4*i) + L[i] * mod8; +        store32_le(s + 4*i, (u32)carry); +        carry >>= 32; +    } +} + +// "Small" dirty ephemeral key. +// Use if you need to shrink the size of the binary, and can afford to +// slow down by a factor of two (compared to the fast version) +// +// This version works by decoupling the cofactor from the main factor. +// +// - The trimmed scalar determines the main factor +// - The clamped bits of the scalar determine the cofactor. +// +// Cofactor and main factor are combined into a single scalar, which is +// then multiplied by a point of order 8*L (unlike the base point, which +// has prime order).  That "dirty" base point is the addition of the +// regular base point (9), and a point of order 8. +void crypto_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32]) +{ +    // Base point of order 8*L +    // Raw scalar multiplication with it does not clear the cofactor, +    // and the resulting public key will reveal 3 bits of the scalar. +    // +    // The low order component of this base point  has been chosen +    // to yield the same results as crypto_x25519_dirty_fast(). +    static const u8 dirty_base_point[32] = { +        0xd8, 0x86, 0x1a, 0xa2, 0x78, 0x7a, 0xd9, 0x26, 0x8b, 0x74, 0x74, 0xb6, +        0x82, 0xe3, 0xbe, 0xc3, 0xce, 0x36, 0x9a, 0x1e, 0x5e, 0x31, 0x47, 0xa2, +        0x6d, 0x37, 0x7c, 0xfd, 0x20, 0xb5, 0xdf, 0x75, +    }; +    // separate the main factor & the cofactor of the scalar +    u8 scalar[32]; +    COPY(scalar, secret_key, 32); +    trim_scalar(scalar); + +    // Separate the main factor and the cofactor +    // +    // The scalar is trimmed, so its cofactor is cleared.  The three +    // least significant bits however still have a main factor.  We must +    // remove it for X25519 compatibility. +    // +    //   cofactor = lsb * L            (modulo 8*L) +    //   combined = scalar + cofactor  (modulo 8*L) +    add_xl(scalar, secret_key[0]); +    scalarmult(public_key, scalar, dirty_base_point, 256); +    WIPE_BUFFER(scalar); +} + +// Select low order point +// We're computing the [cofactor]lop scalar multiplication, where: +// +//   cofactor = tweak & 7. +//   lop      = (lop_x, lop_y) +//   lop_x    = sqrt((sqrt(d + 1) + 1) / d) +//   lop_y    = -lop_x * sqrtm1 +// +// The low order point has order 8. There are 4 such points.  We've +// chosen the one whose both coordinates are positive (below p/2). +// The 8 low order points are as follows: +// +// [0]lop = ( 0       ,  1    ) +// [1]lop = ( lop_x   ,  lop_y) +// [2]lop = ( sqrt(-1), -0    ) +// [3]lop = ( lop_x   , -lop_y) +// [4]lop = (-0       , -1    ) +// [5]lop = (-lop_x   , -lop_y) +// [6]lop = (-sqrt(-1),  0    ) +// [7]lop = (-lop_x   ,  lop_y) +// +// The x coordinate is either 0, sqrt(-1), lop_x, or their opposite. +// The y coordinate is either 0,      -1 , lop_y, or their opposite. +// The pattern for both is the same, except for a rotation of 2 (modulo 8) +// +// This helper function captures the pattern, and we can use it thus: +// +//    select_lop(x, lop_x, sqrtm1, cofactor); +//    select_lop(y, lop_y, fe_one, cofactor + 2); +// +// This is faster than an actual scalar multiplication, +// and requires less code than naive constant time look up. +static void select_lop(fe out, const fe x, const fe k, u8 cofactor) +{ +    fe tmp; +    fe_0(out); +    fe_ccopy(out, k  , (cofactor >> 1) & 1); // bit 1 +    fe_ccopy(out, x  , (cofactor >> 0) & 1); // bit 0 +    fe_neg  (tmp, out); +    fe_ccopy(out, tmp, (cofactor >> 2) & 1); // bit 2 +    WIPE_BUFFER(tmp); +} + +// "Fast" dirty ephemeral key +// We use this one by default. +// +// This version works by performing a regular scalar multiplication, +// then add a low order point.  The scalar multiplication is done in +// Edwards space for more speed (*2 compared to the "small" version). +// The cost is a bigger binary for programs that don't also sign messages. +void crypto_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32]) +{ +    // Compute clean scalar multiplication +    u8 scalar[32]; +    ge pk; +    COPY(scalar, secret_key, 32); +    trim_scalar(scalar); +    ge_scalarmult_base(&pk, scalar); + +    // Compute low order point +    fe t1, t2; +    select_lop(t1, lop_x, sqrtm1, secret_key[0]); +    select_lop(t2, lop_y, fe_one, secret_key[0] + 2); +    ge_precomp low_order_point; +    fe_add(low_order_point.Yp, t2, t1); +    fe_sub(low_order_point.Ym, t2, t1); +    fe_mul(low_order_point.T2, t2, t1); +    fe_mul(low_order_point.T2, low_order_point.T2, D2); + +    // Add low order point to the public key +    ge_madd(&pk, &pk, &low_order_point, t1, t2); + +    // Convert to Montgomery u coordinate (we ignore the sign) +    fe_add(t1, pk.Z, pk.Y); +    fe_sub(t2, pk.Z, pk.Y); +    fe_invert(t2, t2); +    fe_mul(t1, t1, t2); + +    fe_tobytes(public_key, t1); + +    WIPE_BUFFER(t1);    WIPE_CTX(&pk); +    WIPE_BUFFER(t2);    WIPE_CTX(&low_order_point); +    WIPE_BUFFER(scalar); +} + +/////////////////// +/// Elligator 2 /// +/////////////////// +static const fe A = {486662}; + +// Elligator direct map +// +// Computes the point corresponding to a representative, encoded in 32 +// bytes (little Endian).  Since positive representatives fits in 254 +// bits, The two most significant bits are ignored. +// +// From the paper: +// w = -A / (fe(1) + non_square * r^2) +// e = chi(w^3 + A*w^2 + w) +// u = e*w - (fe(1)-e)*(A//2) +// v = -e * sqrt(u^3 + A*u^2 + u) +// +// We ignore v because we don't need it for X25519 (the Montgomery +// ladder only uses u). +// +// Note that e is either 0, 1 or -1 +// if e = 0    u = 0  and v = 0 +// if e = 1    u = w +// if e = -1   u = -w - A = w * non_square * r^2 +// +// Let r1 = non_square * r^2 +// Let r2 = 1 + r1 +// Note that r2 cannot be zero, -1/non_square is not a square. +// We can (tediously) verify that: +//   w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3 +// Therefore: +//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) +//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1 +//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6) +//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)  *     r2^6) +//   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) *  A * r2^3) +// Corollary: +//   e =  1 if (A^2*r1 - r2^2) *  A * r2^3) is a non-zero square +//   e = -1 if (A^2*r1 - r2^2) *  A * r2^3) is not a square +//   Note that w^3 + A*w^2 + w (and therefore e) can never be zero: +//     w^3 + A*w^2 + w = w * (w^2 + A*w + 1) +//     w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1) +//     w^3 + A*w^2 + w = w * (w + A/2)^2        - A^2/4 + 1) +//     which is zero only if: +//       w = 0                   (impossible) +//       (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square) +// +// Let isr   = invsqrt((A^2*r1 - r2^2) *  A * r2^3) +//     isr   = sqrt(1        / ((A^2*r1 - r2^2) *  A * r2^3)) if e =  1 +//     isr   = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) *  A * r2^3)) if e = -1 +// +// if e = 1 +//   let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 +//       u1 = w +//       u1 = u +// +// if e = -1 +//   let ufactor = -non_square * sqrt(-1) * r^2 +//   let vfactor = sqrt(ufactor) +//   let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor +//       u2 = w * -1 * -non_square * r^2 +//       u2 = w * non_square * r^2 +//       u2 = u +void crypto_hidden_to_curve(uint8_t curve[32], const uint8_t hidden[32]) +{ +    fe r, u, t1, t2, t3; +    fe_frombytes_mask(r, hidden, 2); // r is encoded in 254 bits. +    fe_sq(r, r); +    fe_add(t1, r, r); +    fe_add(u, t1, fe_one); +    fe_sq (t2, u); +    fe_mul(t3, A2, t1); +    fe_sub(t3, t3, t2); +    fe_mul(t3, t3, A); +    fe_mul(t1, t2, u); +    fe_mul(t1, t3, t1); +    int is_square = invsqrt(t1, t1); +    fe_mul(u, r, ufactor); +    fe_ccopy(u, fe_one, is_square); +    fe_sq (t1, t1); +    fe_mul(u, u, A); +    fe_mul(u, u, t3); +    fe_mul(u, u, t2); +    fe_mul(u, u, t1); +    fe_neg(u, u); +    fe_tobytes(curve, u); + +    WIPE_BUFFER(t1);  WIPE_BUFFER(r); +    WIPE_BUFFER(t2);  WIPE_BUFFER(u); +    WIPE_BUFFER(t3); +} + +// Elligator inverse map +// +// Computes the representative of a point, if possible.  If not, it does +// nothing and returns -1.  Note that the success of the operation +// depends only on the point (more precisely its u coordinate).  The +// tweak parameter is used only upon success +// +// The tweak should be a random byte.  Beyond that, its contents are an +// implementation detail. Currently, the tweak comprises: +// - Bit  1  : sign of the v coordinate (0 if positive, 1 if negative) +// - Bit  2-5: not used +// - Bits 6-7: random padding +// +// From the paper: +// Let sq = -non_square * u * (u+A) +// if sq is not a square, or u = -A, there is no mapping +// Assuming there is a mapping: +//    if v is positive: r = sqrt(-u     / (non_square * (u+A))) +//    if v is negative: r = sqrt(-(u+A) / (non_square * u    )) +// +// We compute isr = invsqrt(-non_square * u * (u+A)) +// if it wasn't a square, abort. +// else, isr = sqrt(-1 / (non_square * u * (u+A)) +// +// If v is positive, we return isr * u: +//   isr * u = sqrt(-1 / (non_square * u * (u+A)) * u +//   isr * u = sqrt(-u / (non_square * (u+A)) +// +// If v is negative, we return isr * (u+A): +//   isr * (u+A) = sqrt(-1     / (non_square * u * (u+A)) * (u+A) +//   isr * (u+A) = sqrt(-(u+A) / (non_square * u) +int crypto_curve_to_hidden(u8 hidden[32], const u8 public_key[32], u8 tweak) +{ +    fe t1, t2, t3; +    fe_frombytes(t1, public_key);    // t1 = u + +    fe_add(t2, t1, A);               // t2 = u + A +    fe_mul(t3, t1, t2); +    fe_mul_small(t3, t3, -2); +    int is_square = invsqrt(t3, t3); // t3 = sqrt(-1 / non_square * u * (u+A)) +    if (is_square) { +        // The only variable time bit.  This ultimately reveals how many +        // tries it took us to find a representable key. +        // This does not affect security as long as we try keys at random. + +        fe_ccopy    (t1, t2, tweak & 1); // multiply by u if v is positive, +        fe_mul      (t3, t1, t3);        // multiply by u+A otherwise +        fe_mul_small(t1, t3, 2); +        fe_neg      (t2, t3); +        fe_ccopy    (t3, t2, fe_isodd(t1)); +        fe_tobytes(hidden, t3); + +        // Pad with two random bits +        hidden[31] |= tweak & 0xc0; +    } + +    WIPE_BUFFER(t1); +    WIPE_BUFFER(t2); +    WIPE_BUFFER(t3); +    return is_square - 1; +} + +void crypto_hidden_key_pair(u8 hidden[32], u8 secret_key[32], u8 seed[32]) +{ +    u8 pk [32]; // public key +    u8 buf[64]; // seed + representative +    COPY(buf + 32, seed, 32); +    do { +        crypto_chacha20(buf, 0, 64, buf+32, zero); +        crypto_x25519_dirty_fast(pk, buf); // or the "small" version +    } while(crypto_curve_to_hidden(buf+32, pk, buf[32])); +    // Note that the return value of crypto_curve_to_hidden() is +    // independent from its tweak parameter. +    // Therefore, buf[32] is not actually reused.  Either we loop one +    // more time and buf[32] is used for the new seed, or we succeeded, +    // and buf[32] becomes the tweak parameter. + +    crypto_wipe(seed, 32); +    COPY(hidden    , buf + 32, 32); +    COPY(secret_key, buf     , 32); +    WIPE_BUFFER(buf); +    WIPE_BUFFER(pk); +} + +//////////////////// +/// Key exchange /// +//////////////////// +void crypto_key_exchange(u8       shared_key[32], +                         const u8 your_secret_key [32], +                         const u8 their_public_key[32]) +{ +    crypto_x25519(shared_key, your_secret_key, their_public_key); +    crypto_hchacha20(shared_key, shared_key, zero); +} + +/////////////////////// +/// Scalar division /// +/////////////////////// + +// Montgomery reduction. +// Divides x by (2^256), and reduces the result modulo L +// +// Precondition: +//   x < L * 2^256 +// Constants: +//   r = 2^256                 (makes division by r trivial) +//   k = (r * (1/r) - 1) // L  (1/r is computed modulo L   ) +// Algorithm: +//   s = (x * k) % r +//   t = x + s*L      (t is always a multiple of r) +//   u = (t/r) % L    (u is always below 2*L, conditional subtraction is enough) +static void redc(u32 u[8], u32 x[16]) +{ +    static const u32 k[8] = { 0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2, +                              0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2, }; + +    // s = x * k (modulo 2^256) +    // This is cheaper than the full multiplication. +    u32 s[8] = {0}; +    FOR (i, 0, 8) { +        u64 carry = 0; +        FOR (j, 0, 8-i) { +            carry  += s[i+j] + (u64)x[i] * k[j]; +            s[i+j]  = (u32)carry; +            carry >>= 32; +        } +    } +    u32 t[16] = {0}; +    multiply(t, s, L); + +    // t = t + x +    u64 carry = 0; +    FOR (i, 0, 16) { +        carry  += (u64)t[i] + x[i]; +        t[i]    = (u32)carry; +        carry >>= 32; +    } + +    // u = (t / 2^256) % L +    // Note that t / 2^256 is always below 2*L, +    // So a constant time conditional subtraction is enough +    remove_l(u, t+8); + +    WIPE_BUFFER(s); +    WIPE_BUFFER(t); +} + +void crypto_x25519_inverse(u8 blind_salt [32], const u8 private_key[32], +                           const u8 curve_point[32]) +{ +    static const  u8 Lm2[32] = { // L - 2 +        0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, +        0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, +        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, }; +    // 1 in Montgomery form +    u32 m_inv [8] = {0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4, +                     0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,}; + +    u8 scalar[32]; +    COPY(scalar, private_key, 32); +    trim_scalar(scalar); + +    // Convert the scalar in Montgomery form +    // m_scl = scalar * 2^256 (modulo L) +    u32 m_scl[8]; +    { +        u32 tmp[16]; +        ZERO(tmp, 8); +        load32_le_buf(tmp+8, scalar, 8); +        mod_l(scalar, tmp); +        load32_le_buf(m_scl, scalar, 8); +        WIPE_BUFFER(tmp); // Wipe ASAP to save stack space +    } + +    // Compute the inverse +    u32 product[16]; +    for (int i = 252; i >= 0; i--) { +        ZERO(product, 16); +        multiply(product, m_inv, m_inv); +        redc(m_inv, product); +        if (scalar_bit(Lm2, i)) { +            ZERO(product, 16); +            multiply(product, m_inv, m_scl); +            redc(m_inv, product); +        } +    } +    // Convert the inverse *out* of Montgomery form +    // scalar = m_inv / 2^256 (modulo L) +    COPY(product, m_inv, 8); +    ZERO(product + 8, 8); +    redc(m_inv, product); +    store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar + +    // Clear the cofactor of scalar: +    //   cleared = scalar * (3*L + 1)      (modulo 8*L) +    //   cleared = scalar + scalar * 3 * L (modulo 8*L) +    // Note that (scalar * 3) is reduced modulo 8, so we only need the +    // first byte. +    add_xl(scalar, scalar[0] * 3); + +    // Recall that 8*L < 2^256. However it is also very close to +    // 2^255. If we spanned the ladder over 255 bits, random tests +    // wouldn't catch the off-by-one error. +    scalarmult(blind_salt, scalar, curve_point, 256); + +    WIPE_BUFFER(scalar);   WIPE_BUFFER(m_scl); +    WIPE_BUFFER(product);  WIPE_BUFFER(m_inv); +} + +//////////////////////////////// +/// Authenticated encryption /// +//////////////////////////////// +static void lock_auth(u8 mac[16], const u8  auth_key[32], +                      const u8 *ad         , size_t ad_size, +                      const u8 *cipher_text, size_t text_size) +{ +    u8 sizes[16]; // Not secret, not wiped +    store64_le(sizes + 0, ad_size); +    store64_le(sizes + 8, text_size); +    crypto_poly1305_ctx poly_ctx;           // auto wiped... +    crypto_poly1305_init  (&poly_ctx, auth_key); +    crypto_poly1305_update(&poly_ctx, ad         , ad_size); +    crypto_poly1305_update(&poly_ctx, zero       , align(ad_size, 16)); +    crypto_poly1305_update(&poly_ctx, cipher_text, text_size); +    crypto_poly1305_update(&poly_ctx, zero       , align(text_size, 16)); +    crypto_poly1305_update(&poly_ctx, sizes      , 16); +    crypto_poly1305_final (&poly_ctx, mac); // ...here +} + +void crypto_lock_aead(u8 mac[16], u8 *cipher_text, +                      const u8  key[32], const u8  nonce[24], +                      const u8 *ad        , size_t ad_size, +                      const u8 *plain_text, size_t text_size) +{ +    u8 sub_key[32]; +    u8 auth_key[64]; // "Wasting" the whole Chacha block is faster +    crypto_hchacha20(sub_key, key, nonce); +    crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16); +    crypto_chacha20_ctr(cipher_text, plain_text, text_size, +                        sub_key, nonce + 16, 1); +    lock_auth(mac, auth_key, ad, ad_size, cipher_text, text_size); +    WIPE_BUFFER(sub_key); +    WIPE_BUFFER(auth_key); +} + +int crypto_unlock_aead(u8 *plain_text, const u8 key[32], const u8 nonce[24], +                       const u8  mac[16], +                       const u8 *ad         , size_t ad_size, +                       const u8 *cipher_text, size_t text_size) +{ +    u8 sub_key[32]; +    u8 auth_key[64]; // "Wasting" the whole Chacha block is faster +    crypto_hchacha20(sub_key, key, nonce); +    crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16); +    u8 real_mac[16]; +    lock_auth(real_mac, auth_key, ad, ad_size, cipher_text, text_size); +    WIPE_BUFFER(auth_key); +    int mismatch = crypto_verify16(mac, real_mac); +    if (!mismatch) { +        crypto_chacha20_ctr(plain_text, cipher_text, text_size, +                            sub_key, nonce + 16, 1); +    } +    WIPE_BUFFER(sub_key); +    WIPE_BUFFER(real_mac); +    return mismatch; +} + +void crypto_lock(u8 mac[16], u8 *cipher_text, +                 const u8 key[32], const u8 nonce[24], +                 const u8 *plain_text, size_t text_size) +{ +    crypto_lock_aead(mac, cipher_text, key, nonce, 0, 0, plain_text, text_size); +} + +int crypto_unlock(u8 *plain_text, +                  const u8 key[32], const u8 nonce[24], const u8 mac[16], +                  const u8 *cipher_text, size_t text_size) +{ +    return crypto_unlock_aead(plain_text, key, nonce, mac, 0, 0, +                              cipher_text, text_size); +} + +#ifdef MONOCYPHER_CPP_NAMESPACE +} +#endif diff --git a/src/3p/monocypher/monocypher.h b/src/3p/monocypher/monocypher.h new file mode 100644 index 0000000..c7b8396 --- /dev/null +++ b/src/3p/monocypher/monocypher.h @@ -0,0 +1,384 @@ +// Monocypher version 3.1.3 +// +// This file is dual-licensed.  Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence.  The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain.  The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2017-2019, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +//    notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +//    notice, this list of conditions and the following disclaimer in the +//    documentation and/or other materials provided with the +//    distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2017-2019 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide.  This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software.  If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#ifndef MONOCYPHER_H +#define MONOCYPHER_H + +#include <stddef.h> +#include <stdint.h> + +#ifdef MONOCYPHER_CPP_NAMESPACE +namespace MONOCYPHER_CPP_NAMESPACE { +#elif defined(__cplusplus) +extern "C" { +#endif + +//////////////////////// +/// Type definitions /// +//////////////////////// + +// Vtable for EdDSA with a custom hash. +// Instantiate it to define a custom hash. +// Its size, contents, and layout, are part of the public API. +typedef struct { +    void (*hash)(uint8_t hash[64], const uint8_t *message, size_t message_size); +    void (*init  )(void *ctx); +    void (*update)(void *ctx, const uint8_t *message, size_t message_size); +    void (*final )(void *ctx, uint8_t hash[64]); +    size_t ctx_size; +} crypto_sign_vtable; + +// Do not rely on the size or contents of any of the types below, +// they may change without notice. + +// Poly1305 +typedef struct { +    uint32_t r[4];   // constant multiplier (from the secret key) +    uint32_t h[5];   // accumulated hash +    uint8_t  c[16];  // chunk of the message +    uint32_t pad[4]; // random number added at the end (from the secret key) +    size_t   c_idx;  // How many bytes are there in the chunk. +} crypto_poly1305_ctx; + +// Hash (BLAKE2b) +typedef struct { +    uint64_t hash[8]; +    uint64_t input_offset[2]; +    uint64_t input[16]; +    size_t   input_idx; +    size_t   hash_size; +} crypto_blake2b_ctx; + +// Signatures (EdDSA) +typedef struct { +    const crypto_sign_vtable *hash; +    uint8_t buf[96]; +    uint8_t pk [32]; +} crypto_sign_ctx_abstract; +typedef crypto_sign_ctx_abstract crypto_check_ctx_abstract; + +typedef struct { +    crypto_sign_ctx_abstract ctx; +    crypto_blake2b_ctx       hash; +} crypto_sign_ctx; +typedef crypto_sign_ctx crypto_check_ctx; + +//////////////////////////// +/// High level interface /// +//////////////////////////// + +// Constant time comparisons +// ------------------------- + +// Return 0 if a and b are equal, -1 otherwise +int crypto_verify16(const uint8_t a[16], const uint8_t b[16]); +int crypto_verify32(const uint8_t a[32], const uint8_t b[32]); +int crypto_verify64(const uint8_t a[64], const uint8_t b[64]); + +// Erase sensitive data +// -------------------- + +// Please erase all copies +void crypto_wipe(void *secret, size_t size); + + +// Authenticated encryption +// ------------------------ +void crypto_lock(uint8_t        mac[16], +                 uint8_t       *cipher_text, +                 const uint8_t  key[32], +                 const uint8_t  nonce[24], +                 const uint8_t *plain_text, size_t text_size); +int crypto_unlock(uint8_t       *plain_text, +                  const uint8_t  key[32], +                  const uint8_t  nonce[24], +                  const uint8_t  mac[16], +                  const uint8_t *cipher_text, size_t text_size); + +// With additional data +void crypto_lock_aead(uint8_t        mac[16], +                      uint8_t       *cipher_text, +                      const uint8_t  key[32], +                      const uint8_t  nonce[24], +                      const uint8_t *ad        , size_t ad_size, +                      const uint8_t *plain_text, size_t text_size); +int crypto_unlock_aead(uint8_t       *plain_text, +                       const uint8_t  key[32], +                       const uint8_t  nonce[24], +                       const uint8_t  mac[16], +                       const uint8_t *ad         , size_t ad_size, +                       const uint8_t *cipher_text, size_t text_size); + + +// General purpose hash (BLAKE2b) +// ------------------------------ + +// Direct interface +void crypto_blake2b(uint8_t hash[64], +                    const uint8_t *message, size_t message_size); + +void crypto_blake2b_general(uint8_t       *hash   , size_t hash_size, +                            const uint8_t *key    , size_t key_size, // optional +                            const uint8_t *message, size_t message_size); + +// Incremental interface +void crypto_blake2b_init  (crypto_blake2b_ctx *ctx); +void crypto_blake2b_update(crypto_blake2b_ctx *ctx, +                           const uint8_t *message, size_t message_size); +void crypto_blake2b_final (crypto_blake2b_ctx *ctx, uint8_t *hash); + +void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, +                                 const uint8_t      *key, size_t key_size); + +// vtable for signatures +extern const crypto_sign_vtable crypto_blake2b_vtable; + + +// Password key derivation (Argon2 i) +// ---------------------------------- +void crypto_argon2i(uint8_t       *hash,      uint32_t hash_size,     // >= 4 +                    void          *work_area, uint32_t nb_blocks,     // >= 8 +                    uint32_t       nb_iterations,                     // >= 3 +                    const uint8_t *password,  uint32_t password_size, +                    const uint8_t *salt,      uint32_t salt_size);    // >= 8 + +void crypto_argon2i_general(uint8_t       *hash,      uint32_t hash_size,// >= 4 +                            void          *work_area, uint32_t nb_blocks,// >= 8 +                            uint32_t       nb_iterations,                // >= 3 +                            const uint8_t *password,  uint32_t password_size, +                            const uint8_t *salt,      uint32_t salt_size,// >= 8 +                            const uint8_t *key,       uint32_t key_size, +                            const uint8_t *ad,        uint32_t ad_size); + + +// Key exchange (x25519 + HChacha20) +// --------------------------------- +#define crypto_key_exchange_public_key crypto_x25519_public_key +void crypto_key_exchange(uint8_t       shared_key      [32], +                         const uint8_t your_secret_key [32], +                         const uint8_t their_public_key[32]); + + +// Signatures (EdDSA with curve25519 + BLAKE2b) +// -------------------------------------------- + +// Generate public key +void crypto_sign_public_key(uint8_t        public_key[32], +                            const uint8_t  secret_key[32]); + +// Direct interface +void crypto_sign(uint8_t        signature [64], +                 const uint8_t  secret_key[32], +                 const uint8_t  public_key[32], // optional, may be 0 +                 const uint8_t *message, size_t message_size); +int crypto_check(const uint8_t  signature [64], +                 const uint8_t  public_key[32], +                 const uint8_t *message, size_t message_size); + +//////////////////////////// +/// Low level primitives /// +//////////////////////////// + +// For experts only.  You have been warned. + +// Chacha20 +// -------- + +// Specialised hash. +// Used to hash X25519 shared secrets. +void crypto_hchacha20(uint8_t       out[32], +                      const uint8_t key[32], +                      const uint8_t in [16]); + +// Unauthenticated stream cipher. +// Don't forget to add authentication. +void crypto_chacha20(uint8_t       *cipher_text, +                     const uint8_t *plain_text, +                     size_t         text_size, +                     const uint8_t  key[32], +                     const uint8_t  nonce[8]); +void crypto_xchacha20(uint8_t       *cipher_text, +                      const uint8_t *plain_text, +                      size_t         text_size, +                      const uint8_t  key[32], +                      const uint8_t  nonce[24]); +void crypto_ietf_chacha20(uint8_t       *cipher_text, +                          const uint8_t *plain_text, +                          size_t         text_size, +                          const uint8_t  key[32], +                          const uint8_t  nonce[12]); +uint64_t crypto_chacha20_ctr(uint8_t       *cipher_text, +                             const uint8_t *plain_text, +                             size_t         text_size, +                             const uint8_t  key[32], +                             const uint8_t  nonce[8], +                             uint64_t       ctr); +uint64_t crypto_xchacha20_ctr(uint8_t       *cipher_text, +                              const uint8_t *plain_text, +                              size_t         text_size, +                              const uint8_t  key[32], +                              const uint8_t  nonce[24], +                              uint64_t       ctr); +uint32_t crypto_ietf_chacha20_ctr(uint8_t       *cipher_text, +                                  const uint8_t *plain_text, +                                  size_t         text_size, +                                  const uint8_t  key[32], +                                  const uint8_t  nonce[12], +                                  uint32_t       ctr); + +// Poly 1305 +// --------- + +// This is a *one time* authenticator. +// Disclosing the mac reveals the key. +// See crypto_lock() on how to use it properly. + +// Direct interface +void crypto_poly1305(uint8_t        mac[16], +                     const uint8_t *message, size_t message_size, +                     const uint8_t  key[32]); + +// Incremental interface +void crypto_poly1305_init  (crypto_poly1305_ctx *ctx, const uint8_t key[32]); +void crypto_poly1305_update(crypto_poly1305_ctx *ctx, +                            const uint8_t *message, size_t message_size); +void crypto_poly1305_final (crypto_poly1305_ctx *ctx, uint8_t mac[16]); + + +// X-25519 +// ------- + +// Shared secrets are not quite random. +// Hash them to derive an actual shared key. +void crypto_x25519_public_key(uint8_t       public_key[32], +                              const uint8_t secret_key[32]); +void crypto_x25519(uint8_t       raw_shared_secret[32], +                   const uint8_t your_secret_key  [32], +                   const uint8_t their_public_key [32]); + +// "Dirty" versions of x25519_public_key() +// Only use to generate ephemeral keys you want to hide. +// Note that those functions leaks 3 bits of the private key. +void crypto_x25519_dirty_small(uint8_t pk[32], const uint8_t sk[32]); +void crypto_x25519_dirty_fast (uint8_t pk[32], const uint8_t sk[32]); + +// scalar "division" +// Used for OPRF.  Be aware that exponential blinding is less secure +// than Diffie-Hellman key exchange. +void crypto_x25519_inverse(uint8_t       blind_salt [32], +                           const uint8_t private_key[32], +                           const uint8_t curve_point[32]); + + +// EdDSA to X25519 +// --------------- +void crypto_from_eddsa_private(uint8_t x25519[32], const uint8_t eddsa[32]); +void crypto_from_eddsa_public (uint8_t x25519[32], const uint8_t eddsa[32]); + + +// EdDSA -- Incremental interface +// ------------------------------ + +// Signing (2 passes) +// Make sure the two passes hash the same message, +// else you might reveal the private key. +void crypto_sign_init_first_pass(crypto_sign_ctx_abstract *ctx, +                                 const uint8_t  secret_key[32], +                                 const uint8_t  public_key[32]); +void crypto_sign_update(crypto_sign_ctx_abstract *ctx, +                        const uint8_t *message, size_t message_size); +void crypto_sign_init_second_pass(crypto_sign_ctx_abstract *ctx); +// use crypto_sign_update() again. +void crypto_sign_final(crypto_sign_ctx_abstract *ctx, uint8_t signature[64]); + +// Verification (1 pass) +// Make sure you don't use (parts of) the message +// before you're done checking it. +void crypto_check_init  (crypto_check_ctx_abstract *ctx, +                         const uint8_t signature[64], +                         const uint8_t public_key[32]); +void crypto_check_update(crypto_check_ctx_abstract *ctx, +                         const uint8_t *message, size_t message_size); +int crypto_check_final  (crypto_check_ctx_abstract *ctx); + +// Custom hash interface +void crypto_sign_public_key_custom_hash(uint8_t       public_key[32], +                                        const uint8_t secret_key[32], +                                        const crypto_sign_vtable *hash); +void crypto_sign_init_first_pass_custom_hash(crypto_sign_ctx_abstract *ctx, +                                             const uint8_t secret_key[32], +                                             const uint8_t public_key[32], +                                             const crypto_sign_vtable *hash); +void crypto_check_init_custom_hash(crypto_check_ctx_abstract *ctx, +                                   const uint8_t signature[64], +                                   const uint8_t public_key[32], +                                   const crypto_sign_vtable *hash); + +// Elligator 2 +// ----------- + +// Elligator mappings proper +void crypto_hidden_to_curve(uint8_t curve [32], const uint8_t hidden[32]); +int  crypto_curve_to_hidden(uint8_t hidden[32], const uint8_t curve [32], +                            uint8_t tweak); + +// Easy to use key pair generation +void crypto_hidden_key_pair(uint8_t hidden[32], uint8_t secret_key[32], +                            uint8_t seed[32]); + + +#ifdef __cplusplus +} +#endif + +#endif // MONOCYPHER_H diff --git a/src/crypto.c b/src/crypto.c new file mode 100644 index 0000000..f7ccd78 --- /dev/null +++ b/src/crypto.c @@ -0,0 +1,6 @@ +/* This file is dedicated to the public domain. */ + +#include "3p/monocypher/monocypher.c" +#include "3p/monocypher/monocypher-rng.c" + +// vi: sw=4 ts=4 noet tw=80 cc=80 diff --git a/src/crypto.h b/src/crypto.h new file mode 100644 index 0000000..44d4fe2 --- /dev/null +++ b/src/crypto.h @@ -0,0 +1,11 @@ +/* This file is dedicated to the public domain. */ + +#ifndef INC_CRYPTO_H +#define INC_CRYPTO_H + +#include "3p/monocypher/monocypher.h" +#include "3p/monocypher/monocypher-rng.h" + +#endif + +// vi: sw=4 ts=4 noet tw=80 cc=80 | 
